从窗口函数中推导 TopN 或 Limit
窗口函数是一种常见的 SQL 函数。对于 ROW_NUMBER()
或者 RANK()
等编号相关的窗口函数,一种常见的用法是在进行窗口函数求值之后,对求值的结果进行过滤,例如:
SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY a) AS rownumber FROM t) dt WHERE rownumber <= 3
按照正常的 SQL 执行流程,TiDB 需要先对 t
表的所有数据进行排序,然后为每一行都求得相应的 ROW_NUMBER()
结果,最后再进行 rownumber <= 3
的过滤。
从 v7.0.0 开始,TiDB 支持从窗口函数中推导 TopN 或 Limit 算子。通过该优化规则,TiDB 可以将原始 SQL 等价改写成以下形式:
WITH t_topN AS (SELECT a FROM t1 ORDER BY a LIMIT 3) SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY a) AS rownumber FROM t_topN) dt WHERE rownumber <= 3
可以看出,改写后,TiDB 可以从窗口函数与后续的过滤条件中推导出一个 TopN 算子,相比于原始 SQL 中的 Sort 算子(对应 ORDER BY
),TopN 算子的运行效率远高于 Sort 算子,而且 TiKV 和 TiFlash 均支持 TopN 算子的下推,因此能进一步提升改写后的 SQL 的性能。
从窗口函数中推导 TopN 或 Limit 默认关闭。你可以通过将 session 变量 tidb_opt_derive_topn 设置为 ON
开启该功能。
开启后,如需关闭,可以进行以下操作之一:
- 设置 session 变量 tidb_opt_derive_topn 为
false
。 - 可参照优化规则及表达式下推的黑名单中的关闭方法。
限制
- 目前仅
ROW_NUMBER()
窗口函数支持 SQL 语句改写。 - 只有当 SQL 语句的过滤条件是针对
ROW_NUMBER()
结果而且过滤条件为<
或者<=
时,TiDB 才支持改写 SQL 语句。
示例
以下通过一些例子对该优化规则进行说明。
不包含 PARTITION BY 的窗口函数
示例 1:不包含 ORDER BY 的窗口函数
CREATE TABLE t(id int, value int);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER () AS rownumber FROM t) dt WHERE rownumber <= 3;
+----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+
| Projection_9 | 2.40 | root | | Column#5 |
| └─Selection_10 | 2.40 | root | | le(Column#5, 3) |
| └─Window_11 | 3.00 | root | | row_number()->Column#5 over(rows between current row and current row) |
| └─Limit_15 | 3.00 | root | | offset:0, count:3 |
| └─TableReader_26 | 3.00 | root | | data:Limit_25 |
| └─Limit_25 | 3.00 | cop[tikv] | | offset:0, count:3 |
| └─TableFullScan_24 | 3.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+----------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------+
在该查询中,优化器从窗口函数中推导出来了 Limit 并将它下推给了 TiKV。
示例 2:包含 ORDER BY 的窗口函数
CREATE TABLE t(id int, value int);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (ORDER BY value) AS rownumber FROM t) dt WHERE rownumber <= 3;
+----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
| Projection_10 | 2.40 | root | | Column#5 |
| └─Selection_11 | 2.40 | root | | le(Column#5, 3) |
| └─Window_12 | 3.00 | root | | row_number()->Column#5 over(order by test.t.value rows between current row and current row) |
| └─TopN_13 | 3.00 | root | | test.t.value, offset:0, count:3 |
| └─TableReader_25 | 3.00 | root | | data:TopN_24 |
| └─TopN_24 | 3.00 | cop[tikv] | | test.t.value, offset:0, count:3 |
| └─TableFullScan_23 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+----------------------------------+----------+-----------+---------------+---------------------------------------------------------------------------------------------+
在该查询中,优化器从窗口函数中推导出来了 TopN 并将它下推给了 TiKV。
包含 PARTITION BY 的窗口函数
注意
当窗口函数包含 PARTITION BY 时,该优化规则仅在 partition 列是主键的前缀且主键是聚簇索引的时候才能生效。
示例 3:不包含 ORDER BY 的窗口函数
CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1) AS rownumber FROM t) dt WHERE rownumber <= 3;
+------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+
| Projection_10 | 2.40 | root | | Column#6 |
| └─Selection_11 | 2.40 | root | | le(Column#6, 3) |
| └─Shuffle_26 | 3.00 | root | | execution info: concurrency:2, data sources:[TableReader_24] |
| └─Window_12 | 3.00 | root | | row_number()->Column#6 over(partition by test.t.id1 rows between current row and current row) |
| └─Sort_25 | 3.00 | root | | test.t.id1 |
| └─TableReader_24 | 3.00 | root | | data:Limit_23 |
| └─Limit_23 | 3.00 | cop[tikv] | | partition by test.t.id1, offset:0, count:3 |
| └─TableFullScan_22 | 3.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+------------------------------------+---------+-----------+---------------+-----------------------------------------------------------------------------------------------+
在该查询中,优化器从窗口函数中推导出来了 Limit 并将它下推给了 TiKV。值得一提的是这个 Limit 其实是 partition Limit,也就是说对于每个相同 id1
值组成的一组数据上都会进行一次 Limit。
示例 4:包含 ORDER BY 的窗口函数
CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1 ORDER BY value1) AS rownumber FROM t) dt WHERE rownumber <= 3;
+------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+
| Projection_10 | 2.40 | root | | Column#6 |
| └─Selection_11 | 2.40 | root | | le(Column#6, 3) |
| └─Shuffle_23 | 3.00 | root | | execution info: concurrency:3, data sources:[TableReader_21] |
| └─Window_12 | 3.00 | root | | row_number()->Column#6 over(partition by test.t.id1 order by test.t.value1 rows between current row and current row) |
| └─Sort_22 | 3.00 | root | | test.t.id1, test.t.value1 |
| └─TableReader_21 | 3.00 | root | | data:TopN_19 |
| └─TopN_19 | 3.00 | cop[tikv] | | partition by test.t.id1 order by test.t.value1, offset:0, count:3 |
| └─TableFullScan_18 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+------------------------------------+----------+-----------+---------------+----------------------------------------------------------------------------------------------------------------------+
在该查询中,优化器从窗口函数中推导出来了 TopN 并将它下推给了 TiKV。需要注意的是,这个 TopN 其实是 partition 的 TopN, 也就是说对于每个相同 id1
值组成的一组数据上都会进行一次 TopN。
示例 5:PARTITION BY 列不是主键的前缀
CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) clustered);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY value1) AS rownumber FROM t) dt WHERE rownumber <= 3;
+----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+
| Projection_9 | 8000.00 | root | | Column#6 |
| └─Selection_10 | 8000.00 | root | | le(Column#6, 3) |
| └─Shuffle_15 | 10000.00 | root | | execution info: concurrency:5, data sources:[TableReader_13] |
| └─Window_11 | 10000.00 | root | | row_number()->Column#6 over(partition by test.t.value1 rows between current row and current row) |
| └─Sort_14 | 10000.00 | root | | test.t.value1 |
| └─TableReader_13 | 10000.00 | root | | data:TableFullScan_12 |
| └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+----------------------------------+----------+-----------+---------------+--------------------------------------------------------------------------------------------------+
在该查询中,因为 partition 的列不是主键的前缀,所以 SQL 没有被改写。
示例 6:PARTITION BY 列是主键的前缀,但主键不是聚簇索引
CREATE TABLE t(id1 int, id2 int, value1 int, value2 int, primary key(id1,id2) nonclustered);
SET tidb_opt_derive_topn=on;
EXPLAIN SELECT * FROM (SELECT ROW_NUMBER() OVER (PARTITION BY id1) AS rownumber FROM t use index()) dt WHERE rownumber <= 3;
+----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+
| id | estRows | task | access object | operator info |
+----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+
| Projection_9 | 8000.00 | root | | Column#7 |
| └─Selection_10 | 8000.00 | root | | le(Column#7, 3) |
| └─Shuffle_15 | 10000.00 | root | | execution info: concurrency:5, data sources:[TableReader_13] |
| └─Window_11 | 10000.00 | root | | row_number()->Column#7 over(partition by test.t.id1 rows between current row and current row) |
| └─Sort_14 | 10000.00 | root | | test.t.id1 |
| └─TableReader_13 | 10000.00 | root | | data:TableFullScan_12 |
| └─TableFullScan_12 | 10000.00 | cop[tikv] | table:t | keep order:false, stats:pseudo |
+----------------------------------+----------+-----------+---------------+-----------------------------------------------------------------------------------------------+
在该查询中,即使 PARTITION 的列是主键的前缀,但是因为主键不是聚簇索引,所以 SQL 没被改写。