5. 数据结构

本章深入讲解之前学过的一些内容,同时,还增加了新的知识点。

5.1. 列表详解

列表数据类型支持很多方法,列表对象的所有方法所示如下:

list.append(x)

在列表末尾添加一个元素,相当于 a[len(a):] = [x]

list.extend(iterable)

用可迭代对象的元素扩展列表。相当于 a[len(a):] = iterable

list.insert(i, x)

在指定位置插入元素。第一个参数是插入元素的索引,因此,a.insert(0, x) 在列表开头插入元素, a.insert(len(a), x) 等同于 a.append(x)

list.remove(x)

从列表中删除第一个值为 x 的元素。未找到指定元素时,触发 ValueError 异常。

list.pop([i])

删除列表中指定位置的元素,并返回被删除的元素。未指定位置时,a.pop() 删除并返回列表的最后一个元素。(方法签名中 i 两边的方括号表示该参数是可选的,不是要求输入方括号。这种表示法常见于 Python 参考库)。

list.clear()

删除列表里的所有元素,相当于 del a[:]

list.index(x[, start[, end]])

返回列表中第一个值为 x 的元素的零基索引。未找到指定元素时,触发 ValueError 异常。

可选参数 startend 是切片符号,用于将搜索限制为列表的特定子序列。返回的索引是相对于整个序列的开始计算的,而不是 start 参数。

list.count(x)

返回列表中元素 x 出现的次数。

list.sort(**, key=None, reverse=False*)

就地排序列表中的元素(要了解自定义排序参数,详见 sorted())。

list.reverse()

翻转列表中的元素。

list.copy()

返回列表的浅拷贝。相当于 a[:]

多数列表方法示例:

  1. >>> fruits = ['orange', 'apple', 'pear', 'banana', 'kiwi', 'apple', 'banana']
  2. >>> fruits.count('apple')
  3. 2
  4. >>> fruits.count('tangerine')
  5. 0
  6. >>> fruits.index('banana')
  7. 3
  8. >>> fruits.index('banana', 4) # Find next banana starting at position 4
  9. 6
  10. >>> fruits.reverse()
  11. >>> fruits
  12. ['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']
  13. >>> fruits.append('grape')
  14. >>> fruits
  15. ['banana', 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange', 'grape']
  16. >>> fruits.sort()
  17. >>> fruits
  18. ['apple', 'apple', 'banana', 'banana', 'grape', 'kiwi', 'orange', 'pear']
  19. >>> fruits.pop()
  20. 'pear'

You might have noticed that methods like insert, remove or sort that only modify the list have no return value printed — they return the default None. 1 This is a design principle for all mutable data structures in Python.

还有,不是所有数据都可以排序或比较。例如,[None, 'hello', 10] 就不可排序,因为整数不能与字符串对比,而 None 不能与其他类型对比。有些类型根本就没有定义顺序关系,例如,3+4j < 5+7j 这种对比操作就是无效的。

5.1.1. 用列表实现堆栈

使用列表方法实现堆栈非常容易,最后插入的最先取出(“后进先出”)。把元素添加到堆栈的顶端,使用 append() 。从堆栈顶部取出元素,使用 pop() ,不用指定索引。例如:

  1. >>> stack = [3, 4, 5]
  2. >>> stack.append(6)
  3. >>> stack.append(7)
  4. >>> stack
  5. [3, 4, 5, 6, 7]
  6. >>> stack.pop()
  7. 7
  8. >>> stack
  9. [3, 4, 5, 6]
  10. >>> stack.pop()
  11. 6
  12. >>> stack.pop()
  13. 5
  14. >>> stack
  15. [3, 4]

5.1.2. 用列表实现队列

列表也可以用作队列,最先加入的元素,最先取出(“先进先出”);然而,列表作为队列的效率很低。因为,在列表末尾添加和删除元素非常快,但在列表开头插入或移除元素却很慢(因为所有其他元素都必须移动一位)。

实现队列最好用 collections.deque,可以快速从两端添加或删除元素。例如:

  1. >>> from collections import deque
  2. >>> queue = deque(["Eric", "John", "Michael"])
  3. >>> queue.append("Terry") # Terry arrives
  4. >>> queue.append("Graham") # Graham arrives
  5. >>> queue.popleft() # The first to arrive now leaves
  6. 'Eric'
  7. >>> queue.popleft() # The second to arrive now leaves
  8. 'John'
  9. >>> queue # Remaining queue in order of arrival
  10. deque(['Michael', 'Terry', 'Graham'])

5.1.3. 列表推导式

列表推导式创建列表的方式更简洁。常见的用法为,对序列或可迭代对象中的每个元素应用某种操作,用生成的结果创建新的列表;或用满足特定条件的元素创建子序列。

例如,创建平方值的列表:

  1. >>> squares = []
  2. >>> for x in range(10):
  3. ... squares.append(x**2)
  4. ...
  5. >>> squares
  6. [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

注意,这段代码创建(或覆盖)变量 x,该变量在循环结束后仍然存在。下述方法可以无副作用地计算平方列表:

  1. squares = list(map(lambda x: x**2, range(10)))

或等价于:

  1. squares = [x**2 for x in range(10)]

上面这种写法更简洁、易读。

列表推导式的方括号内包含以下内容:一个表达式,后面为一个 for 子句,然后,是零个或多个 forif 子句。结果是由表达式依据 forif 子句求值计算而得出一个新列表。 举例来说,以下列表推导式将两个列表中不相等的元素组合起来:

  1. >>> [(x, y) for x in [1,2,3] for y in [3,1,4] if x != y]
  2. [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

等价于:

  1. >>> combs = []
  2. >>> for x in [1,2,3]:
  3. ... for y in [3,1,4]:
  4. ... if x != y:
  5. ... combs.append((x, y))
  6. ...
  7. >>> combs
  8. [(1, 3), (1, 4), (2, 3), (2, 1), (2, 4), (3, 1), (3, 4)]

注意,上面两段代码中,forif 的顺序相同。

表达式是元组(例如上例的 (x, y))时,必须加上括号:

  1. >>> vec = [-4, -2, 0, 2, 4]
  2. >>> # create a new list with the values doubled
  3. >>> [x*2 for x in vec]
  4. [-8, -4, 0, 4, 8]
  5. >>> # filter the list to exclude negative numbers
  6. >>> [x for x in vec if x >= 0]
  7. [0, 2, 4]
  8. >>> # apply a function to all the elements
  9. >>> [abs(x) for x in vec]
  10. [4, 2, 0, 2, 4]
  11. >>> # call a method on each element
  12. >>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
  13. >>> [weapon.strip() for weapon in freshfruit]
  14. ['banana', 'loganberry', 'passion fruit']
  15. >>> # create a list of 2-tuples like (number, square)
  16. >>> [(x, x**2) for x in range(6)]
  17. [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]
  18. >>> # the tuple must be parenthesized, otherwise an error is raised
  19. >>> [x, x**2 for x in range(6)]
  20. File "<stdin>", line 1
  21. [x, x**2 for x in range(6)]
  22. ^^^^^^^
  23. SyntaxError: did you forget parentheses around the comprehension target?
  24. >>> # flatten a list using a listcomp with two 'for'
  25. >>> vec = [[1,2,3], [4,5,6], [7,8,9]]
  26. >>> [num for elem in vec for num in elem]
  27. [1, 2, 3, 4, 5, 6, 7, 8, 9]

列表推导式可以使用复杂的表达式和嵌套函数:

  1. >>> from math import pi
  2. >>> [str(round(pi, i)) for i in range(1, 6)]
  3. ['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.1.4. 嵌套的列表推导式

列表推导式中的初始表达式可以是任何表达式,甚至可以是另一个列表推导式。

下面这个 3x4 矩阵,由 3 个长度为 4 的列表组成:

  1. >>> matrix = [
  2. ... [1, 2, 3, 4],
  3. ... [5, 6, 7, 8],
  4. ... [9, 10, 11, 12],
  5. ... ]

下面的列表推导式可以转置行列:

  1. >>> [[row[i] for row in matrix] for i in range(4)]
  2. [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

As we saw in the previous section, the inner list comprehension is evaluated in the context of the for that follows it, so this example is equivalent to:

  1. >>> transposed = []
  2. >>> for i in range(4):
  3. ... transposed.append([row[i] for row in matrix])
  4. ...
  5. >>> transposed
  6. [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

反过来说,也等价于:

  1. >>> transposed = []
  2. >>> for i in range(4):
  3. ... # the following 3 lines implement the nested listcomp
  4. ... transposed_row = []
  5. ... for row in matrix:
  6. ... transposed_row.append(row[i])
  7. ... transposed.append(transposed_row)
  8. ...
  9. >>> transposed
  10. [[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]

实际应用中,最好用内置函数替代复杂的流程语句。此时,zip() 函数更好用:

  1. >>> list(zip(*matrix))
  2. [(1, 5, 9), (2, 6, 10), (3, 7, 11), (4, 8, 12)]

关于本行中星号的详细说明,参见 解包实参列表

5.2. del 语句

del 语句按索引,而不是值从列表中移除元素。与返回值的 pop() 方法不同, del 语句也可以从列表中移除切片,或清空整个列表(之前是将空列表赋值给切片)。 例如:

  1. >>> a = [-1, 1, 66.25, 333, 333, 1234.5]
  2. >>> del a[0]
  3. >>> a
  4. [1, 66.25, 333, 333, 1234.5]
  5. >>> del a[2:4]
  6. >>> a
  7. [1, 66.25, 1234.5]
  8. >>> del a[:]
  9. >>> a
  10. []

del 也可以用来删除整个变量:

  1. >>> del a

此后,再引用 a 就会报错(直到为它赋与另一个值)。后文会介绍 del 的其他用法。

5.3. 元组和序列

列表和字符串有很多共性,例如,索引和切片操作。这两种数据类型是 序列 (参见 序列类型 —- list, tuple, range)。随着 Python 语言的发展,其他的序列类型也被加入其中。本节介绍另一种标准序列类型:元组

元组由多个用逗号隔开的值组成,例如:

  1. >>> t = 12345, 54321, 'hello!'
  2. >>> t[0]
  3. 12345
  4. >>> t
  5. (12345, 54321, 'hello!')
  6. >>> # Tuples may be nested:
  7. ... u = t, (1, 2, 3, 4, 5)
  8. >>> u
  9. ((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
  10. >>> # Tuples are immutable:
  11. ... t[0] = 88888
  12. Traceback (most recent call last):
  13. File "<stdin>", line 1, in <module>
  14. TypeError: 'tuple' object does not support item assignment
  15. >>> # but they can contain mutable objects:
  16. ... v = ([1, 2, 3], [3, 2, 1])
  17. >>> v
  18. ([1, 2, 3], [3, 2, 1])

输出时,元组都要由圆括号标注,这样才能正确地解释嵌套元组。输入时,圆括号可有可无,不过经常是必须的(如果元组是更大的表达式的一部分)。不允许为元组中的单个元素赋值,当然,可以创建含列表等可变对象的元组。

虽然,元组与列表很像,但使用场景不同,用途也不同。元组是 immutable (不可变的),一般可包含异质元素序列,通过解包(见本节下文)或索引访问(如果是 namedtuples,可以属性访问)。列表是 mutable (可变的),列表元素一般为同质类型,可迭代访问。

构造 0 个或 1 个元素的元组比较特殊:为了适应这种情况,对句法有一些额外的改变。用一对空圆括号就可以创建空元组;只有一个元素的元组可以通过在这个元素后添加逗号来构建(圆括号里只有一个值的话不够明确)。丑陋,但是有效。例如:

  1. >>> empty = ()
  2. >>> singleton = 'hello', # <-- note trailing comma
  3. >>> len(empty)
  4. 0
  5. >>> len(singleton)
  6. 1
  7. >>> singleton
  8. ('hello',)

语句 t = 12345, 54321, 'hello!'元组打包 的例子:值 12345, 54321'hello!' 一起被打包进元组。逆操作也可以:

  1. >>> x, y, z = t

称之为 序列解包 也是妥妥的,适用于右侧的任何序列。序列解包时,左侧变量与右侧序列元素的数量应相等。注意,多重赋值其实只是元组打包和序列解包的组合。

5.4. 集合

Python 还支持 集合 这种数据类型。集合是由不重复元素组成的无序容器。基本用法包括成员检测、消除重复元素。集合对象支持合集、交集、差集、对称差分等数学运算。

创建集合用花括号或 set() 函数。注意,创建空集合只能用 set(),不能用 {}{} 创建的是空字典,下一小节介绍数据结构:字典。

以下是一些简单的示例

  1. >>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
  2. >>> print(basket) # show that duplicates have been removed
  3. {'orange', 'banana', 'pear', 'apple'}
  4. >>> 'orange' in basket # fast membership testing
  5. True
  6. >>> 'crabgrass' in basket
  7. False
  8. >>> # Demonstrate set operations on unique letters from two words
  9. ...
  10. >>> a = set('abracadabra')
  11. >>> b = set('alacazam')
  12. >>> a # unique letters in a
  13. {'a', 'r', 'b', 'c', 'd'}
  14. >>> a - b # letters in a but not in b
  15. {'r', 'd', 'b'}
  16. >>> a | b # letters in a or b or both
  17. {'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
  18. >>> a & b # letters in both a and b
  19. {'a', 'c'}
  20. >>> a ^ b # letters in a or b but not both
  21. {'r', 'd', 'b', 'm', 'z', 'l'}

列表推导式 类似,集合也支持推导式:

  1. >>> a = {x for x in 'abracadabra' if x not in 'abc'}
  2. >>> a
  3. {'r', 'd'}

5.5. 字典

字典 (参见 映射类型 —- dict) 也是一种常用的 Python 內置数据类型。其他语言可能把字典称为 联合内存联合数组。与以连续整数为索引的序列不同,字典以 关键字 为索引,关键字通常是字符串或数字,也可以是其他任意不可变类型。只包含字符串、数字、元组的元组,也可以用作关键字。但如果元组直接或间接地包含了可变对象,就不能用作关键字。列表不能当关键字,因为列表可以用索引、切片、append()extend() 等方法修改。

可以把字典理解为 键值对 的集合,但字典的键必须是唯一的。花括号 {} 用于创建空字典。另一种初始化字典的方式是,在花括号里输入逗号分隔的键值对,这也是字典的输出方式。

字典的主要用途是通过关键字存储、提取值。用 del 可以删除键值对。用已存在的关键字存储值,与该关键字关联的旧值会被取代。通过不存在的键提取值,则会报错。

对字典执行 list(d) 操作,返回该字典中所有键的列表,按插入次序排列(如需排序,请使用 sorted(d))。检查字典里是否存在某个键,使用关键字 in

以下是一些字典的简单示例:

  1. >>> tel = {'jack': 4098, 'sape': 4139}
  2. >>> tel['guido'] = 4127
  3. >>> tel
  4. {'jack': 4098, 'sape': 4139, 'guido': 4127}
  5. >>> tel['jack']
  6. 4098
  7. >>> del tel['sape']
  8. >>> tel['irv'] = 4127
  9. >>> tel
  10. {'jack': 4098, 'guido': 4127, 'irv': 4127}
  11. >>> list(tel)
  12. ['jack', 'guido', 'irv']
  13. >>> sorted(tel)
  14. ['guido', 'irv', 'jack']
  15. >>> 'guido' in tel
  16. True
  17. >>> 'jack' not in tel
  18. False

dict() 构造函数可以直接用键值对序列创建字典:

  1. >>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
  2. {'sape': 4139, 'guido': 4127, 'jack': 4098}

字典推导式可以用任意键值表达式创建字典:

  1. >>> {x: x**2 for x in (2, 4, 6)}
  2. {2: 4, 4: 16, 6: 36}

关键字是比较简单的字符串时,直接用关键字参数指定键值对更便捷:

  1. >>> dict(sape=4139, guido=4127, jack=4098)
  2. {'sape': 4139, 'guido': 4127, 'jack': 4098}

5.6. 循环的技巧

在字典中循环时,用 items() 方法可同时取出键和对应的值:

  1. >>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
  2. >>> for k, v in knights.items():
  3. ... print(k, v)
  4. ...
  5. gallahad the pure
  6. robin the brave

在序列中循环时,用 enumerate() 函数可以同时取出位置索引和对应的值:

  1. >>> for i, v in enumerate(['tic', 'tac', 'toe']):
  2. ... print(i, v)
  3. ...
  4. 0 tic
  5. 1 tac
  6. 2 toe

同时循环两个或多个序列时,用 zip() 函数可以将其内的元素一一匹配:

  1. >>> questions = ['name', 'quest', 'favorite color']
  2. >>> answers = ['lancelot', 'the holy grail', 'blue']
  3. >>> for q, a in zip(questions, answers):
  4. ... print('What is your {0}? It is {1}.'.format(q, a))
  5. ...
  6. What is your name? It is lancelot.
  7. What is your quest? It is the holy grail.
  8. What is your favorite color? It is blue.

逆向循环序列时,先正向定位序列,然后调用 reversed() 函数:

  1. >>> for i in reversed(range(1, 10, 2)):
  2. ... print(i)
  3. ...
  4. 9
  5. 7
  6. 5
  7. 3
  8. 1

按指定顺序循环序列,可以用 sorted() 函数,在不改动原序列的基础上,返回一个重新的序列:

  1. >>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
  2. >>> for i in sorted(basket):
  3. ... print(i)
  4. ...
  5. apple
  6. apple
  7. banana
  8. orange
  9. orange
  10. pear

使用 set() 去除序列中的重复元素。使用 sorted()set() 则按排序后的顺序,循环遍历序列中的唯一元素:

  1. >>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
  2. >>> for f in sorted(set(basket)):
  3. ... print(f)
  4. ...
  5. apple
  6. banana
  7. orange
  8. pear

一般来说,在循环中修改列表的内容时,创建新列表比较简单,且安全:

  1. >>> import math
  2. >>> raw_data = [56.2, float('NaN'), 51.7, 55.3, 52.5, float('NaN'), 47.8]
  3. >>> filtered_data = []
  4. >>> for value in raw_data:
  5. ... if not math.isnan(value):
  6. ... filtered_data.append(value)
  7. ...
  8. >>> filtered_data
  9. [56.2, 51.7, 55.3, 52.5, 47.8]

5.7. 深入条件控制

whileif 条件句不只可以进行比较,还可以使用任意运算符。

比较运算符 innot in 用于执行确定一个值是否存在(或不存在)于某个容器中的成员检测。 运算符 isis not 用于比较两个对象是否是同一个对象。 所有比较运算符的优先级都一样,且低于任何数值运算符。

比较操作支持链式操作。例如,a < b == c 校验 a 是否小于 b,且 b 是否等于 c

比较操作可以用布尔运算符 andor 组合,并且,比较操作(或其他布尔运算)的结果都可以用 not 取反。这些操作符的优先级低于比较操作符;not 的优先级最高, or 的优先级最低,因此,A and not B or C 等价于 (A and (not B)) or C。与其他运算符操作一样,此处也可以用圆括号表示想要的组合。

布尔运算符 andor 也称为 短路 运算符:其参数从左至右解析,一旦可以确定结果,解析就会停止。例如,如果 AC 为真,B 为假,那么 A and B and C 不会解析 C。用作普通值而不是布尔值时,短路操作符返回的值通常是最后一个变量。

还可以把比较操作或逻辑表达式的结果赋值给变量,例如:

  1. >>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
  2. >>> non_null = string1 or string2 or string3
  3. >>> non_null
  4. 'Trondheim'

注意,Python 与 C 不同,在表达式内部赋值必须显式使用 海象运算符 :=。 这避免了 C 程序中常见的问题:要在表达式中写 == 时,却写成了 =

5.8. 序列和其他类型的比较

序列对象可以与相同序列类型的其他对象比较。这种比较使用 字典式 顺序:首先,比较前两个对应元素,如果不相等,则可确定比较结果;如果相等,则比较之后的两个元素,以此类推,直到其中一个序列结束。如果要比较的两个元素本身是相同类型的序列,则递归地执行字典式顺序比较。如果两个序列中所有的对应元素都相等,则两个序列相等。如果一个序列是另一个的初始子序列,则较短的序列可被视为较小(较少)的序列。 对于字符串来说,字典式顺序使用 Unicode 码位序号排序单个字符。下面列出了一些比较相同类型序列的例子:

  1. (1, 2, 3) < (1, 2, 4)
  2. [1, 2, 3] < [1, 2, 4]
  3. 'ABC' < 'C' < 'Pascal' < 'Python'
  4. (1, 2, 3, 4) < (1, 2, 4)
  5. (1, 2) < (1, 2, -1)
  6. (1, 2, 3) == (1.0, 2.0, 3.0)
  7. (1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

注意,对不同类型的对象来说,只要待比较的对象提供了合适的比较方法,就可以使用 <> 进行比较。例如,混合数值类型通过数值进行比较,所以,0 等于 0.0,等等。否则,解释器不会随便给出一个对比结果,而是触发 TypeError 异常。

备注

1

别的语言可能会返回可变对象,允许方法连续执行,例如,d->insert("a")->remove("b")->sort();