7.6. Mathematical Functions and Operators

Mathematical Operators

OperatorDescription
+Addition
-Subtraction
*Multiplication
/Division (integer division performs truncation)
%Modulus (remainder)

Mathematical Functions

  • abs(x) → [same as input]
  • Returns the absolute value of x.
  • cbrt(x) → double
  • Returns the cube root of x.
  • ceil(x) → [same as input]
  • This is an alias for ceiling().
  • ceiling(x) → [same as input]
  • Returns x rounded up to the nearest integer.
  • cosine_similarity(x, y) → double
  • Returns the cosine similarity between the sparse vectors x and y:
    1. SELECT cosine_similarity(MAP(ARRAY['a'], ARRAY[1.0]), MAP(ARRAY['a'], ARRAY[2.0])); 1.0
  • degrees(x) → double
  • Converts angle x in radians to degrees.
  • e() → double
  • Returns the constant Euler’s number.
  • exp(x) → double
  • Returns Euler’s number raised to the power of x.
  • floor(x) → [same as input]
  • Returns x rounded down to the nearest integer.
  • from_base(string, radix) → bigint
  • Returns the value of string interpreted as a base-radix number.
  • inverse_normal_cdf(mean, sd, p) → double
  • Compute the inverse of the Normal cdf with given mean and standarddeviation (sd) for the cumulative probability (p): P(N < n). The mean must bea real value and the standard deviation must be a real and positive value.The probability p must lie on the interval (0, 1).
  • normal_cdf(mean, sd, v) → double
  • Compute the Normal cdf with given mean and standard deviation (sd): P(N < v; mean, sd).The mean and value v must be real values and the standard deviation must be a realand positive value.
  • inverse_beta_cdf(a, b, p) → double
  • Compute the inverse of the Beta cdf with given a, b parameters for the cumulativeprobability (p): P(N < n). The a, b parameters must be positive real values.The probability p must lie on the interval [0, 1].
  • beta_cdf(a, b, v) → double
  • Compute the Beta cdf with given a, b parameters: P(N < v; a, b).The a, b parameters must be positive real numbers and value v must be a real value.The value v must lie on the interval [0, 1].
  • ln(x) → double
  • Returns the natural logarithm of x.
  • log2(x) → double
  • Returns the base 2 logarithm of x.
  • log10(x) → double
  • Returns the base 10 logarithm of x.
  • mod(n, m) → [same as input]
  • Returns the modulus (remainder) of n divided by m.
  • pi() → double
  • Returns the constant Pi.
  • pow(x, p) → double
  • This is an alias for power().
  • power(x, p) → double
  • Returns x raised to the power of p.
  • radians(x) → double
  • Converts angle x in degrees to radians.
  • rand() → double
  • This is an alias for random().
  • random() → double
  • Returns a pseudo-random value in the range 0.0 <= x < 1.0.
  • random(n) → [same as input]
  • Returns a pseudo-random number between 0 and n (exclusive).
  • round(x) → [same as input]
  • Returns x rounded to the nearest integer.
  • round(x, d) → [same as input]
  • Returns x rounded to d decimal places.
  • sign(x) → [same as input]
  • Returns the signum function of x, that is:
    • 0 if the argument is 0,
    • 1 if the argument is greater than 0,
    • -1 if the argument is less than 0.
    For double arguments, the function additionally returns:
    • NaN if the argument is NaN,
    • 1 if the argument is +Infinity,
    • -1 if the argument is -Infinity.
  • sqrt(x) → double
  • Returns the square root of x.
  • to_base(x, radix) → varchar
  • Returns the base-radix representation of x.
  • truncate(x) → double
  • Returns x rounded to integer by dropping digits after decimal point.
  • width_bucket(x, bound1, bound2, n) → bigint
  • Returns the bin number of x in an equi-width histogram with thespecified bound1 and bound2 bounds and n number of buckets.
  • width_bucket(x, bins) → bigint
  • Returns the bin number of x according to the bins specified by thearray bins. The bins parameter must be an array of doubles and isassumed to be in sorted ascending order.

Statistical Functions

  • wilson_interval_lower(successes, trials, z) → double
  • Returns the lower bound of the Wilson score interval of a Bernoulli trial processat a confidence specified by the z-score z.
  • wilson_interval_upper(successes, trials, z) → double
  • Returns the upper bound of the Wilson score interval of a Bernoulli trial processat a confidence specified by the z-score z.

Trigonometric Functions

All trigonometric function arguments are expressed in radians.See unit conversion functions degrees() and radians().

  • acos(x) → double
  • Returns the arc cosine of x.
  • asin(x) → double
  • Returns the arc sine of x.
  • atan(x) → double
  • Returns the arc tangent of x.
  • atan2(y, x) → double
  • Returns the arc tangent of y / x.
  • cos(x) → double
  • Returns the cosine of x.
  • cosh(x) → double
  • Returns the hyperbolic cosine of x.
  • sin(x) → double
  • Returns the sine of x.
  • tan(x) → double
  • Returns the tangent of x.
  • tanh(x) → double
  • Returns the hyperbolic tangent of x.

Floating Point Functions

  • infinity() → double
  • Returns the constant representing positive infinity.
  • is_finite(x) → boolean
  • Determine if x is finite.
  • is_infinite(x) → boolean
  • Determine if x is infinite.
  • is_nan(x) → boolean
  • Determine if x is not-a-number.
  • nan() → double
  • Returns the constant representing not-a-number.