新增Pass
本文从三个方面介绍了Lite
中的Pass
结构:Pass是什么、Pass的实现与接口、Pass的一般注册流程。最后以Fc_fuse_pass
为例介绍了fusion_pass
的作用与注册方法。
前述:Pass是什么?
CxxPredictor加载模型后,在执行预测前会先优化模型。模型优化过程是通过Pass实现的。 具体调用关系如下: 图片
CreatePredictor(CxxConfig)
函数调用了Predictor->Build(CxxConfig)- CxxPredictor的构建过程(Build)分为两步:
- Predictor->LoadModel() 加载模型文件到program中
- Predicotr->optimizer_.Run() 对Program中的原始图形结构进行优化
- 对图结构的优化是通过调用
Pass->Apply(const std::unique_ptr<SSAGraph>& graph)
方法实现的。
- 对图结构的优化是通过调用
- CxxPredictor的构建过程(Build)分为两步:
每一类Pass定义了一种优化过程,包括:原模型中的kernel选取、OP融合、冗余OP去除、子图创建、内存优化、类型推导、类型转换等。
Pass的实现与接口 :Pass基类、PassManager和Pass注册
1、Pass基类:paddle::lite::mir::Pass
class Pass {
public:
// Pass的类型,Pass按照作用的不同可以分为三种
enum class Kind { //种类的作用不太清楚
// 1. 修改模型中的图拓扑结构的Pass
kProgramWise = 0,
// 2. 不修改图结构,修改状态的Pass
kStmtWise,
// 3. 不修改 IR,用于搜集信息和可视化信息的Pass.
kDebug,
};
// 主要实现函数:Apply 函数定义了 Pass 运行时执行的操作
virtual void Apply(const std::unique_ptr<SSAGraph>& graph) = 0;
bool is_program_pass() const { return kind_ == Kind::kProgramWise; }
bool is_stmt_pass() const { return kind_ == Kind::kStmtWise; }
virtual ~Pass() = default;
private:
const Kind kind_; // pass 的种类
std::string name_; // pass 的名称
std::set<TargetType> bound_targets_; // 指定了Pass运行的硬件平台,模型优化过程会根据当前硬件平台是否匹配筛选Pass。
std::unordered_map<std::string, std::set<lite_api::Place>> bound_kernels_; // 绑定的kernel
};
// Different kinds.
class ProgramPass : public Pass {
public:
ProgramPass() : Pass(Kind::kProgramWise) {}
};
class StmtPass : public Pass {
public:
StmtPass() : Pass(Kind::kStmtWise) {}
};
class DebugPass : public Pass {
public:
DebugPass() : Pass(Kind::kDebug) {}
};
代码位置:lite/core/mir/pass.h
主要类成员: const Kind kind_
: Pass类型。pass 有三种基本基本类型 :修改图结构的ProgramPass
、修改状态量的StmtPass
和Debug过程采集信息与控制可视化的DebugPass
。std::string name_
:pass 的名称 std::set<TargetType> bound_targets_
: Pass运行的硬件平台,optimizer.Run()优化过程会根据硬件平台选择匹配的Pass。———根据硬件平台自动选择需要的pass std::unordered_map<std::string, std::set<lite_api::Place>> bound_kernels_
: Pass 绑定的kernel (what’s this used for) 主要接口: Pass::Apply(const std::unique_ptr& graph)
: Pass优化过程的具体操作,是新注册Pass需要实现的接口。输入为SSAGraph
型指针,是对模型结构的拓扑表示。
2、Pass管理 paddle::lite::mir::PassManager
class PassManager {
public:
// 内部静态变量PassManager,用来存储使用的Pass和图优化操作
static PassManager& Global() {
static PassManager x;
return x;
}
// 执行所有的 Pass
void Run(const std::unique_ptr<SSAGraph>& graph) {
for (auto& pass : passes_) {
LOG(INFO) << "Running MIR pass " << pass->name();
pass->Apply(graph);
}
private:
std::list<std::unique_ptr> passes_; //存储所有的 Pass
std::map<std::string, mir::Pass*> pass_map_; //使用map变量存储 PassName::Pass
}
代码位置:lite/core/mir/pass_manager.h
主要类成员: std::list:unique_ptr> passes_;
: List类型,存储了所有已注册Pass。 std::map<std::string, mir::Pass*> pass_map_;
: Map类型,存储了所有”Pass名称-Pass类”键对,用于根据名称查找Pass。
主要接口: static PassManager& Global()
返回PassManager全局静态变量,该变量存储了所有已注册的Pass bool AddNewPass(const std::string& name, Pass* pass)
添加新的Pass到PassManager中
3、 Pass 注册 paddle::lite::mir::PassRegistry
代码位置:lite/core/mir/pass_registry.h
主要接口: REGISTER_MIR_PASS(name__, class__)
:宏定义函数,用于注册Pass。注册Pass过程实现的是 PassManager::Global().AddNewPass(name__, class__)
,将新注册Pass添加到全局变量PassManager
中。
Pass的一般注册流程与使用方法
1. Pass 注册流程
在lite/core/mir
或其子目录下继承Pass基类
,实现Pass::Apply
接口,并使用宏REGISTER_MIR_PASS(name__, class__)
将Pass注册到PassManager
即完成了新Pass注册。
**以新建 **new_demo_pass
为例,具体流程如下: (1)在lite/core/mir
路径下新建example_pass.cc
和 new_demo_pass.h
文件 (2)在example_pass.h
文件中继承Pass基类(ProgramPass、StmtPass或DebugPass)定义自己的Pass类。
#include "lite/core/mir/pass.h"
namespace paddle {
namespace lite {
namespace mir {
class ExamplePass : public ProgramPass {
void Apply(const std::unique_ptr<SSAGraph> &graph) override {}
...
};
} // namespace mir
} // namespace lite
} // namespace paddle
(3)在example_pass.cc
文件中实现ExamplePass::Apply()
接口,并注册ExamplePass
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/example_pass.h"
namespace paddle {
namespace lite {
namespace mir {
void ExamplePass::Apply(const std::unique_ptr<SSAGraph>& graph) {
...
}
} // namespace mir
} // namespace lite
} // namespace paddle
REGISTER_MIR_PASS(example_pass, paddle::lite::mir::ExamplePass)
.BindTargets({TARGET(kARM)}); // Pass执行的目标硬件平台
// .BindKernel("conv2d"); //Pass绑定的 kernel
(4)修改lite/core/mir/CMakeLists.txt
文件,将example_pass.cc
编译到mir_passes
库中
lite_cc_library(mir_passes
SRCS
demo_pass.cc // 新建的Pass文件
...
memory_optimize_pass.cc
DEPS mir_pass types context ${mir_fusers} ${subgraph_passes})
2. Pass使用流程
将Pass注册到PassManager后不会自动生效。需要在optimizer->run()
函数中添加该Pass才会在模型优化过程中调用。 (1)在paddle_use_passes.h
文件中调用该Pass
#include "paddle_lite_factory_helper.h" // NOLINT
...
USE_MIR_PASS(new_demo_pass); //调用 new_demo_pass
(2)要想在优化模型时调用该Pass,需要在optimizer->run()
函数中手动添加调用。
修改lite/core/optimizer.h
文件,添加new_demo_pass
到Optimizer::Run()
函数;
class Optimizer {
public:
void Run(...) {
...
if (passes.empty()) {
RunPasses(std::vector<std::string>{
{"new_demo_pass" //将新注册的Pass添加在这里
...
}
...
}
(3)只有CxxPredictor才会在模型加载后根据Pass优化模型。
...
#include "paddle_use_passes.h" // 引用Pass优化模型
void RunModel() {
// 1. 创建 CxxConfig
CxxConfig config;
config.set_model_dir(FLAGS_model_dir);
config.set_valid_places(Place{TARGET(kARM), PRECISION(kFloat)});
// 2. 创建CxxPredictor,该过程包括加载模型和用Pass优化模型
std::shared_ptr> predictor =
Creat<CxxConfig>(config);
}
Fusion Pass的定义与注册
Fusion Pass
是一种常见图结构优化Pass,可将多个连续OP融合成单个等效OP,减少数据交换并简化图结构。Pass运行时调用Fuser
自动查找并替换指定图结构,所以注册FuserPass
时还需要实现对应的Fuser类。
下面以fc_fuse_pass
为例,详细说明FusionPass
的效果和注册方法。
fc_fuse_pass
的作用
将相邻的mul
算子和 element_wise add
算子 融合成一个 FC
算子
mul(X) = X * W
elementwise_add( mul(x) ) = X * W + Bias
//----------> after fusion
FC(X) = X * W +Bias
Pass 运行效果如下: 图片 mul和elementwise_add的原有参数映射到FC的参数上: 图片
fc_fuse_pass
的注册方法
1、创建FcFuser
(1)在lite/core/mir/fusion
路径下新建fc_fuser.cc
和 fc_fuser.h
文件 (2)在fc_fuser.h
文件中继承FuseBase
定义自己的Fuser类。
#include "lite/core/mir/pattern_matcher_high_api.h"
namespace paddle {
namespace lite {
namespace mir {
namespace fusion {
class FcFuser : public FuseBase {
public:
void BuildPattern() override;
void InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) override;
private:
cpp::OpDesc GenOpDesc(const key2nodes_t& matched) override;
};
} // namespace fusion
} // namespace mir
} // namespace lite
} // namespace paddle
主要接口: FuseBase::BuildPattern
: 描述需要替换位置的图结构(pattern),Fuser运行时会自动查找并替换该pattern。 FuseBase::GenOpDesc
: 创建融合后的等效Fused_op。 FuseBase::InsertNewNode
:用Fused_op替换原始图结构(pattern)。
对于 FcFuser
:BuildPattern描述的Pattern是mul+elementwise add
,GenOpDesc创建的FC_op,InsertNewNode函数的效果是用新建的FC_op
替换模型中的mul+elementwise add
pattern。
(3) 在fc_fuser.cc
文件中实现 BuildPattern()
、GenOpDesc()
、InsertNewNode()
接口
下面以FcFuser为例介绍三种接口的实现:
// 1. BuildPattern函数,描述需要替换的图结构
// FcFuser::BuildPattern() 描述了 mul + element_wise add 图结构
void FcFuser::BuildPattern() {
// (1) 用OpNode描述和VarNode
// mul OP
auto* mul = OpNode("mul", "mul");
// mul OP 的输入和输出
auto* x = VarNode("x")->assert_is_op_input("mul", "X");
auto* W = VarNode("W")->assert_is_op_input("mul", "Y");
auto* mul_out = VarNode("mul_out");
// elementwise_add OP
auto* add = OpNode("add", "elementwise_add");
//elementwise_add 的输入
auto* b = VarNode("b")->assert_is_persistable_var();
// elementwise_add OP的输出(最终输出)
auto* Out = VarNode("Out");
//(2) 描述拓扑连接 (Fuse之前mul 和elementwise_add的连接)
std::vector<PMNode*> mul_inputs{W, x};
std::vector<PMNode*> add_inputs{mul_out, b};
mul_inputs >> *mul >> *mul_out;
add_inputs >> *add >> *Out;
//(3) 声明新的拓扑结构中将会被移除的节点,包括被fuse的OP和OP之间的中间变量
mul_out->AsIntermediate();
mul->AsIntermediate();
add->AsIntermediate();
}
// 2. GenOpDesc函数新建等效 Fused_op
// FcFuser::GenOpDesc() 新建了Fc_op
cpp::OpDesc FcFuser::GenOpDesc(const key2nodes_t& matched) {
// (1) 得到第一个OP节点的 OpDesc ,并清空输入输出信息
cpp::OpDesc op_desc = *matched.at("mul")->stmt()->op_info();
op_desc.mutable_inputs()->clear();
op_desc.mutable_outputs()->clear();
// (2) 修改OpDesc , 将OpType设置为 "fc" (FC OP 的OP_type),
op_desc.SetType("fc");
// (3) 设置OpDesc中的Input、Output、Attrbute。分别连接到BuildPattern()函数中创建的VarNode
op_desc.SetInput("Input", {matched.at("x")->arg()->name});
op_desc.SetInput("W", {matched.at("W")->arg()->name});
op_desc.SetInput("Bias", {matched.at("b")->arg()->name});
op_desc.SetOutput("Out", {matched.at("Out")->arg()->name});
op_desc.SetAttr(
"in_num_col_dims",
matched.at("mul")->stmt()->op_info()->GetAttr<int>("x_num_col_dims"));
return op_desc;
}
// 3. InsertNewNode函数用Fused OP 替换模型图中的原始 Pattern
// FcFuser::InsertNewNode() 用Fc_OP替换原始模型图中的 " mul + element_wise add "
void FcFuser::InsertNewNode(SSAGraph* graph, const key2nodes_t& matched) {
// (1) 创建FC OP的参数(OpDesc)
auto op_desc = GenOpDesc(matched);
// 创建一个 FC OP
auto fc_op = LiteOpRegistry::Global().Create("fc");
// 找到原拓扑结构中的scope (作用域)和 valid_places (可支持设备类型)
auto mul = matched.at("mul")->stmt()->op();
auto* scope = mul->scope();
auto& valid_places = mul->valid_places();
// (2) 将 FC OP的 scope和 valid_places设置与fuse前相同,并在图中创建该节点(node)
fc_op->Attach(op_desc, scope);
auto* new_op_node = graph->GraphCreateInstructNode(fc_op, valid_places);
// (3) 将FC节点连接到输入输出(var_node)
IR_NODE_LINK_TO(matched.at("W"), new_op_node);
IR_NODE_LINK_TO(matched.at("x"), new_op_node);
IR_NODE_LINK_TO(matched.at("b"), new_op_node);
IR_NODE_LINK_TO(new_op_node, matched.at("Out"));
}
2、注册fc_fuse_pass
(1)在lite/core/mir/fusion
路径下新建fc_fuse_pass.cc
和 fc_fuse_pass.h
文件 (2)在fc_fuse_pass.h
文件中,继承ProgramPass
定义FcFusePass
。
#include "lite/core/mir/pass.h"
namespace paddle {
namespace lite {
namespace mir {
class FcFusePass : public ProgramPass {
public:
void Apply(const std::unique_ptr<SSAGraph>& graph) override; namespace mir namespace lite namespace paddle
(3)在fc_fuse_pass.cc
文件中实现FcFusePass::Apply()
接口,并注册FcFusePass
#include "lite/core/mir/pass_registry.h"
#include "lite/core/mir/example_pass.h"
namespace paddle {
namespace lite {
namespace mir {
void FcFusePass::Apply(const std::unique_ptr<SSAGraph>& graph) {
fusion::FcFuser fuser;
fuser(graph.get());namespace mir
} // namespace lite
} // namespace paddle
REGISTER_MIR_PASS(lite_fc_fuse_pass, paddle::lite::mir::FcFusePass)
.BindTargets({TARGET(kAny)}) // FcFusePass 可以在任何硬件平台执行
.BindKernel("fc"); // FcFusePass 绑定 fc_kernel
(4)修改lite/core/mir/fusion/CMakeLists.txt
文件,将fc_fuser.cc
编译到mir_fusers
库
lite_cc_library(fuse_fc
SRCS fc_fuser.cc
DEPS pattern_matcher_high_api)
set(mir_fusers
fuse_fc
...
CACHE INTERNAL "fusers")
(5)修改lite/core/mir/CMakeLists.txt
文件,将fc_fuse_pass.cc
编译到mir_pass
库
lite_cc_library(mir_passes
SRCS
fusion/fc_fuse_pass.cc
...
DEPS mir_pass types context ${mir_fusers} ${subgraph_passes})
3、使用 fc_fuse_pass
(1) lite/api/paddle_use_passes.h
使用USE_LITE_PASS
宏来引入新加入的pass
USE_MIR_PASS(lite_fc_fuse_pass);
(2) 在lite/core/optimizer.h
文件的Optimizer::Run()
函数中添加新注册的pass
class Optimizer {
public:
void Run(Program&& program,
const std::vector<Place>& valid_places,
core::KernelPickFactor kernel_pick_factor,
const std::vector<std::string>& passes = {}) {
...
if (passes.empty()) {
RunPasses(std::vector<std::string>{
{"lite_fc_fuse_pass", // the newly registered pass
...
"argument_type_display_pass"}});
} else {
RunPasses(passes);
}
exec_scope_ = program.exec_scope();
}
(3) 以上修改完成后,在CreatePredictor(CxxConfig)创建CxxPredictor时,模型优化过程会调用lite_fc_fuse_pass
,扫描mul + element_wise add
结构并替换为等效的Fc_OP。