PaddleLite使用MTK APU预测部署
Paddle Lite已支持MTK APU的预测部署。 其接入原理是与之前华为NPU类似,即加载并分析Paddle模型,将Paddle算子转成MTK的Neuron adapter API(类似Android NN API)进行网络构建,在线生成并执行模型。
支持现状
已支持的芯片
已支持的设备
- MT8168-P2V1 Tablet。
已支持的Paddle模型
已支持(或部分支持)的Paddle算子
- relu
- conv2d
- depthwise_conv2d
- elementwise_add
- elementwise_mul
- fc
- pool2d
- softmax
参考示例演示
测试设备(MT8168-P2V1 Tablet)
mt8168_p2v1_tablet_front
mt8168_p2v1_tablet_back
准备设备环境
- 由于需要依赖特定版本的firmware,感兴趣的同学通过MTK官网https://www.mediatek.cn/about/contact-us提供的联系方式(类别请选择”销售”),获取测试设备和firmware;
准备交叉编译环境
- 为了保证编译环境一致,建议参考编译环境准备中的Docker开发环境进行配置。
运行图像分类示例程序
- 下载示例程序PaddleLite-android-demo.tar.gz,解压后清单如下:
- PaddleLite-android-demo
- image_classification_demo
- assets
- images
- tabby_cat.jpg # 测试图片
- labels
- synset_words.txt # 1000分类label文件
- models
- mobilenet_v1_int8_224_for_cpu.nb # 已通过opt转好的、适合arm cpu的mobilenetv1量化模型
- mobilenet_v1_int8_224_for_apu.nb # 已通过opt转好的、适合mtk apu的mobilenetv1量化模型
- shell # android shell端的示例程序
- CMakeLists.txt # 示例程序CMake脚本
- build
- image_classification_demo # 已编译好的android shell端的示例程序
- image_classification_demo.cc # 示例程序源码
- build.sh # 示例程序编译脚本
- run.sh # 示例程序运行脚本
- apk # 常规android应用程序
- app
- src
- main
- java # java层代码
- cpp # 自定义的jni实现
- app.iml
- build.gradle
- gradle
...
- libs
- PaddleLite
- arm64-v8a
- include # PaddleLite头文件
- lib
- libc++_shared.so
- libpaddle_light_api_shared.so # 预编译PaddleLite库
- armeabi-v7a
- OpenCV # OpenCV 4.2 for android
- Android shell端的示例程序
- 进入PaddleLite-android-demo/image_classification_demo/shell,直接执行./run.sh即可,注意:run.sh不能在docker环境执行,否则可能无法找到设备;
- 如果需要更改测试图片,可将图片拷贝到PaddleLite-android-demo/image_classification_demo/assets/images目录下,然后将run.sh的IMAGE_NAME设置成指定文件名即可;
- 如果需要重新编译示例程序,直接运行./build.sh即可,注意:build.sh的执行必须在docker环境中,否则可能编译出错;
- 需要说明的是,由于MTK APU暂时只支持NHWC的数据布局格式,而PaddleLite默认使用NCHW的数据布局格式,导致额外增加了预测中输入张量的NCHW到NHWC的转换,大约耗费8~9ms。
$ cd PaddleLite-android-demo/image_classification_demo/shell
$ ./run.sh
...
warmup: 5 repeat: 10, average: 30.998502 ms, max: 31.049002 ms, min: 30.937002 ms
results: 3
Top0 Egyptian cat - -0.122845
Top1 tabby, tabby cat - -0.122845
Top2 tiger cat - -0.544028
Preprocess time: 3.620000 ms
Prediction time: 30.998502 ms
Postprocess time: 0.069000 ms
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b00000, pa = 0xfb3f9000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1af8000, pa = 0xfb3fa000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1af7000, pa = 0xf8ffe000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1af6000, pa = 0xf7bfe000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1af5000, pa = 0xf7bfd000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b0c000, pa = 0xfb3fe000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b0b000, pa = 0xfb3ff000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b0a000, pa = 0xf31ff000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b09000, pa = 0xfb3f6000, len = 255
[vpuBuffer] vpuMemAllocator::freeMem: type = 1, va = 0x7ed1b08000, pa = 0xf7bff000, len = 255
- 常规Android应用程序
- 安装Android Studio 3.4
- 打开Android Studio,在”Welcome to Android Studio”窗口点击”Open an existing Android Studio project”,在弹出的路径选择窗口中进入”PaddleLite-android-demo/image_classification_demo/apk”目录,然后点击右下角的”Open”按钮即可导入工程;
- 通过USB连接Android手机、平板或开发板;
- 临时关闭selinux模式,允许app调用系统库;
$ adb root
# setenforce 0
- 待工程加载完成后,点击菜单栏的Build->Rebuild Project按钮,如果提示CMake版本不匹配,请点击错误提示中的’Install CMake xxx.xxx.xx’按钮,重新安装CMake,然后再次点击菜单栏的Build->Rebuild Project按钮;
- 待工程编译完成后,点击菜单栏的Run->Run ‘App’按钮,在弹出的”Select Deployment Target”窗口选择已经连接的Android设备,然后点击”OK”按钮;
- 等待大约1分钟后(第一次时间比较长,需要耐心等待),app已经安装到设备上。默认使用ARM CPU模型进行预测,由于MT8168的CPU由四核Arm-Cortex A53组成,性能较一般手机的A7x系列要弱很多,如下图所示,只有6fps;
mt8168_p2v1_tablet_cpu
- 点击app界面右下角的设置按钮,在弹出的设置页面点击”Choose pre-installed models”,选择”mobilenet_v1_int8_for_apu”,点击返回按钮后,app将切换到APU模型,如下图所示,帧率提高到14fps。
mt8168_p2v1_tablet_apu
更新模型
- 通过Paddle Fluid训练,或X2Paddle转换得到MobileNetv1 foat32模型mobilenet_v1_fp32_224_fluid;
- 参考模型量化-有校准数据训练后量化使用PaddleSlim对float32模型进行量化(注意:由于MTK APU只支持量化OP,在启动量化脚本时请注意相关参数的设置),最终得到全量化MobileNetV1模型mobilenet_v1_int8_224_fluid;
- 参考模型转化方法,利用opt工具转换生成MTK APU模型,仅需要将valid_targets设置为apu,arm即可。
$ ./opt --model_dir=mobilenet_v1_int8_224_fluid \
--optimize_out_type=naive_buffer \
--optimize_out=mobilenet_v1_int8_224_for_apu \
--valid_targets=apu,arm
- 注意:opt生成的模型只是标记了MTK APU支持的Paddle算子,并没有真正生成MTK APU模型,只有在执行时才会将标记的Paddle算子转成MTK Neuron adapter API调用实现组网,最终生成并执行模型。
更新支持MTK APU的Paddle Lite库
- 下载PaddleLite源码和APU DDK;
$ git clone https://github.com/PaddlePaddle/Paddle-Lite.git
$ cd Paddle-Lite
$ git checkout <release-version-tag>
$ wget https://paddlelite-demo.bj.bcebos.com/devices/mediatek/apu_ddk.tar.gz
$ tar -xvf apu_ddk.tar.gz
- 编译tiny_publish for MT8168-P2V1 Tablet
$ ./lite/tools/build.sh --arm_os=android --arm_abi=armv8 --arm_lang=gcc --android_stl=c++_shared --build_extra=ON --with_log=ON --build_apu=ON --apu_ddk_root=./apu_ddk tiny_publish
- 将编译生成的build.lite.android.armv8.gcc/inference_lite_lib.android.armv8.apu/cxx/include替换PaddleLite-android-demo/libs/PaddleLite/arm64-v8a/include目录;
- 将编译生成的build.lite.android.armv8.gcc/inference_lite_lib.android.armv8.apu/cxx/lib/libpaddle_light_api_shared.so替换PaddleLite-android-demo/libs/PaddleLite/arm64-v8a/lib/libpaddle_light_api_shared.so文件。
其它说明
- 由于涉及到License的问题,无法提供用于测试的firmware,我们深感抱歉。如果确实对此非常感兴趣,可以参照之前提到的联系方式,直接联系MTK的销售;
- MTK研发同学正在持续增加用于适配Paddle算子bridge/converter,以便适配更多Paddle模型。