- Ruby client
- Installing the Ruby client
- Connecting to OpenSearch
- Connecting to Amazon OpenSearch Service
- Connecting to Amazon OpenSearch Serverless
- Creating an index
- Mappings
- Indexing one document
- Updating a document
- Deleting a document
- Bulk operations
- Searching for a document
- Boolean query
- Multi-search
- Scroll
- Deleting an index
- Sample program
- Ruby AWS Sigv4 Client
Ruby client
The OpenSearch Ruby client allows you to interact with your OpenSearch clusters through Ruby methods rather than HTTP methods and raw JSON. For the client’s complete API documentation and additional examples, see the opensearch-transport, opensearch-api, opensearch-dsl, and opensearch-ruby gem documentation.
This getting started guide illustrates how to connect to OpenSearch, index documents, and run queries. For the client source code, see the opensearch-ruby repo.
Installing the Ruby client
To install the Ruby gem for the Ruby client, run the following command:
gem install opensearch-ruby
copy
To use the client, import it as a module:
require 'opensearch'
copy
Connecting to OpenSearch
To connect to the default OpenSearch host, create a client object, passing the default host address in the constructor:
client = OpenSearch::Client.new(host: 'http://localhost:9200')
copy
The following example creates a client object with a custom URL and the log
option set to true
. It sets the retry_on_failure
parameter to retry a failed request five times rather than the default three times. Finally, it increases the timeout by setting the request_timeout
parameter to 120 seconds. It then returns the basic cluster health information:
client = OpenSearch::Client.new(
url: "http://localhost:9200",
retry_on_failure: 5,
request_timeout: 120,
log: true
)
client.cluster.health
copy
The output is as follows:
2022-08-25 14:24:52 -0400: GET http://localhost:9200/ [status:200, request:0.048s, query:n/a]
2022-08-25 14:24:52 -0400: < {
"name" : "opensearch",
"cluster_name" : "docker-cluster",
"cluster_uuid" : "Aw0F5Pt9QF6XO9vXQHIs_w",
"version" : {
"distribution" : "opensearch",
"number" : "2.2.0",
"build_type" : "tar",
"build_hash" : "b1017fa3b9a1c781d4f34ecee411e0cdf930a515",
"build_date" : "2022-08-09T02:27:25.256769336Z",
"build_snapshot" : false,
"lucene_version" : "9.3.0",
"minimum_wire_compatibility_version" : "7.10.0",
"minimum_index_compatibility_version" : "7.0.0"
},
"tagline" : "The OpenSearch Project: https://opensearch.org/"
}
2022-08-25 14:24:52 -0400: GET http://localhost:9200/_cluster/health [status:200, request:0.018s, query:n/a]
2022-08-25 14:24:52 -0400: < {"cluster_name":"docker-cluster","status":"yellow","timed_out":false,"number_of_nodes":1,"number_of_data_nodes":1,"discovered_master":true,"discovered_cluster_manager":true,"active_primary_shards":10,"active_shards":10,"relocating_shards":0,"initializing_shards":0,"unassigned_shards":8,"delayed_unassigned_shards":0,"number_of_pending_tasks":0,"number_of_in_flight_fetch":0,"task_max_waiting_in_queue_millis":0,"active_shards_percent_as_number":55.55555555555556}
Connecting to Amazon OpenSearch Service
To connect to Amazon OpenSearch Service, first install the opensearch-aws-sigv4
gem:
gem install opensearch-aws-sigv4
require 'opensearch-aws-sigv4'
require 'aws-sigv4'
signer = Aws::Sigv4::Signer.new(service: 'es',
region: 'us-west-2', # signing service region
access_key_id: 'key_id',
secret_access_key: 'secret')
client = OpenSearch::Aws::Sigv4Client.new({
host: 'https://your.amz-managed-opensearch.domain',
log: true
}, signer)
# create an index and document
index = 'prime'
client.indices.create(index: index)
client.index(index: index, id: '1', body: { name: 'Amazon Echo',
msrp: '5999',
year: 2011 })
# search for the document
client.search(body: { query: { match: { name: 'Echo' } } })
# delete the document
client.delete(index: index, id: '1')
# delete the index
client.indices.delete(index: index)
copy
Connecting to Amazon OpenSearch Serverless
To connect to Amazon OpenSearch Serverless Service, first install the opensearch-aws-sigv4
gem:
gem install opensearch-aws-sigv4
require 'opensearch-aws-sigv4'
require 'aws-sigv4'
signer = Aws::Sigv4::Signer.new(service: 'aoss',
region: 'us-west-2', # signing service region
access_key_id: 'key_id',
secret_access_key: 'secret')
client = OpenSearch::Aws::Sigv4Client.new({
host: 'https://your.amz-managed-opensearch.domain', # serverless endpoint for OpenSearch Serverless
log: true
}, signer)
# create an index and document
index = 'prime'
client.indices.create(index: index)
client.index(index: index, id: '1', body: { name: 'Amazon Echo',
msrp: '5999',
year: 2011 })
# search for the document
client.search(body: { query: { match: { name: 'Echo' } } })
# delete the document
client.delete(index: index, id: '1')
# delete the index
client.indices.delete(index: index)
copy
Creating an index
You don’t need to create an index explicitly in OpenSearch. Once you upload a document into an index that does not exist, OpenSearch creates the index automatically. Alternatively, you can create an index explicitly to specify settings like the number of primary and replica shards. To create an index with non-default settings, create an index body hash with those settings:
index_body = {
'settings': {
'index': {
'number_of_shards': 1,
'number_of_replicas': 2
}
}
}
client.indices.create(
index: 'students',
body: index_body
)
copy
Mappings
OpenSearch uses dynamic mapping to infer field types of the documents that are indexed. However, to have more control over the schema of your document, you can pass an explicit mapping to OpenSearch. You can define data types for some or all fields of your document in this mapping. To create a mapping for an index, use the put_mapping
method:
client.indices.put_mapping(
index: 'students',
body: {
properties: {
first_name: { type: 'keyword' },
last_name: { type: 'keyword' }
}
}
)
copy
By default, string fields are mapped as text
, but in the mapping above, the first_name
and last_name
fields are mapped as keyword
. This mapping signals to OpenSearch that these fields should not be analyzed and should support only full case-sensitive matches.
You can verify the index’s mappings using the get_mapping
method:
response = client.indices.get_mapping(index: 'students')
copy
If you know the mapping of your documents in advance and want to avoid mapping errors (for example, misspellings of a field name), you can set the dynamic
parameter to strict
:
client.indices.put_mapping(
index: 'students',
body: {
dynamic: 'strict',
properties: {
first_name: { type: 'keyword' },
last_name: { type: 'keyword' },
gpa: { type: 'float'},
grad_year: { type: 'integer'}
}
}
)
copy
With strict mapping, you can index a document with a missing field, but you cannot index a document with a new field. For example, indexing the following document with a misspelled grad_yea
field fails:
document = {
first_name: 'Connor',
last_name: 'James',
gpa: 3.93,
grad_yea: 2021
}
client.index(
index: 'students',
body: document,
id: 100,
refresh: true
)
copy
OpenSearch returns a mapping error:
{"error":{"root_cause":[{"type":"strict_dynamic_mapping_exception","reason":"mapping set to strict, dynamic introduction of [grad_yea] within [_doc] is not allowed"}],"type":"strict_dynamic_mapping_exception","reason":"mapping set to strict, dynamic introduction of [grad_yea] within [_doc] is not allowed"},"status":400}
Indexing one document
To index one document, use the index
method:
document = {
first_name: 'Connor',
last_name: 'James',
gpa: 3.93,
grad_year: 2021
}
client.index(
index: 'students',
body: document,
id: 100,
refresh: true
)
copy
Updating a document
To update a document, use the update
method:
client.update(index: 'students',
id: 100,
body: { doc: { gpa: 3.25 } },
refresh: true)
copy
Deleting a document
To delete a document, use the delete
method:
client.delete(
index: 'students',
id: 100,
refresh: true
)
copy
Bulk operations
You can perform several operations at the same time by using the bulk
method. The operations may be of the same type or of different types.
You can index multiple documents using the bulk
method:
actions = [
{ index: { _index: 'students', _id: '200' } },
{ first_name: 'James', last_name: 'Rodriguez', gpa: 3.91, grad_year: 2019 },
{ index: { _index: 'students', _id: '300' } },
{ first_name: 'Nikki', last_name: 'Wolf', gpa: 3.87, grad_year: 2020 }
]
client.bulk(body: actions, refresh: true)
copy
You can delete multiple documents as follows:
# Deleting multiple documents.
actions = [
{ delete: { _index: 'students', _id: 200 } },
{ delete: { _index: 'students', _id: 300 } }
]
client.bulk(body: actions, refresh: true)
copy
You can perform different operations when using bulk
as follows:
actions = [
{ index: { _index: 'students', _id: 100, data: { first_name: 'Paulo', last_name: 'Santos', gpa: 3.29, grad_year: 2022 } } },
{ index: { _index: 'students', _id: 200, data: { first_name: 'Shirley', last_name: 'Rodriguez', gpa: 3.92, grad_year: 2020 } } },
{ index: { _index: 'students', _id: 300, data: { first_name: 'Akua', last_name: 'Mansa', gpa: 3.95, grad_year: 2022 } } },
{ index: { _index: 'students', _id: 400, data: { first_name: 'John', last_name: 'Stiles', gpa: 3.72, grad_year: 2019 } } },
{ index: { _index: 'students', _id: 500, data: { first_name: 'Li', last_name: 'Juan', gpa: 3.94, grad_year: 2022 } } },
{ index: { _index: 'students', _id: 600, data: { first_name: 'Richard', last_name: 'Roe', gpa: 3.04, grad_year: 2020 } } },
{ update: { _index: 'students', _id: 100, data: { doc: { gpa: 3.73 } } } },
{ delete: { _index: 'students', _id: 200 } }
]
client.bulk(body: actions, refresh: true)
copy
In the above example, you pass the data and the header together and you denote the data with the data:
key.
Searching for a document
To search for a document, use the search
method. The following example searches for a student whose first or last name is “James.” It uses a multi_match
query to search for two fields (first_name
and last_name
), and it is boosting the last_name
field in relevance with a caret notation (last_name^2
).
q = 'James'
query = {
'size': 5,
'query': {
'multi_match': {
'query': q,
'fields': ['first_name', 'last_name^2']
}
}
}
response = client.search(
body: query,
index: 'students'
)
copy
If you omit the request body in the search
method, your query becomes a match_all
query and returns all documents in the index:
client.search(index: 'students')
copy
Boolean query
The Ruby client exposes full OpenSearch query capability. In addition to simple searches that use the match query, you can create a more complex Boolean query to search for students who graduated in 2022 and sort them by last name. In the example below, search is limited to 10 documents.
query = {
'query': {
'bool': {
'filter': {
'term': {
'grad_year': 2022
}
}
}
},
'sort': {
'last_name': {
'order': 'asc'
}
}
}
response = client.search(index: 'students', from: 0, size: 10, body: query)
copy
Multi-search
You can bulk several queries together and perform a multi-search using the msearch
method. The following code searches for students whose GPAs are outside the 3.1–3.9 range:
actions = [
{},
{query: {range: {gpa: {gt: 3.9}}}},
{},
{query: {range: {gpa: {lt: 3.1}}}}
]
response = client.msearch(index: 'students', body: actions)
copy
Scroll
You can paginate your search results using the Scroll API:
response = client.search(index: index_name, scroll: '2m', size: 2)
while response['hits']['hits'].size.positive?
scroll_id = response['_scroll_id']
puts(response['hits']['hits'].map { |doc| [doc['_source']['first_name'] + ' ' + doc['_source']['last_name']] })
response = client.scroll(scroll: '1m', body: { scroll_id: scroll_id })
end
copy
First, you issue a search query, specifying the scroll
and size
parameters. The scroll
parameter tells OpenSearch how long to keep the search context. In this case, it is set to two minutes. The size
parameter specifies how many documents you want to return in each request.
The response to the initial search query contains a _scroll_id
that you can use to get the next set of documents. To do this, you use the scroll
method, again specifying the scroll
parameter and passing the _scroll_id
in the body. You don’t need to specify the query or index to the scroll
method. The scroll
method returns the next set of documents and the _scroll_id
. It’s important to use the latest _scroll_id
when requesting the next batch of documents because _scroll_id
can change between requests.
Deleting an index
You can delete the index using the delete
method:
response = client.indices.delete(index: index_name)
copy
Sample program
The following is a complete sample program that illustrates all of the concepts described in the preceding sections. The Ruby client’s methods return responses as Ruby hashes, which are hard to read. To display JSON responses in a pretty format, the sample program uses the MultiJson.dump
method.
require 'opensearch'
client = OpenSearch::Client.new(host: 'http://localhost:9200')
# Create an index with non-default settings
index_name = 'students'
index_body = {
'settings': {
'index': {
'number_of_shards': 1,
'number_of_replicas': 2
}
}
}
client.indices.create(
index: index_name,
body: index_body
)
# Create a mapping
client.indices.put_mapping(
index: index_name,
body: {
properties: {
first_name: { type: 'keyword' },
last_name: { type: 'keyword' }
}
}
)
# Get mappings
response = client.indices.get_mapping(index: index_name)
puts 'Mappings for the students index:'
puts MultiJson.dump(response, pretty: "true")
# Add one document to the index
puts 'Adding one document:'
document = {
first_name: 'Connor',
last_name: 'James',
gpa: 3.93,
grad_year: 2021
}
id = 100
client.index(
index: index_name,
body: document,
id: id,
refresh: true
)
response = client.search(index: index_name)
puts MultiJson.dump(response, pretty: "true")
# Update a document
puts 'Updating a document:'
client.update(index: index_name, id: id, body: { doc: { gpa: 3.25 } }, refresh: true)
response = client.search(index: index_name)
puts MultiJson.dump(response, pretty: "true")
print 'The updated gpa is '
puts response['hits']['hits'].map { |doc| doc['_source']['gpa'] }
# Add many documents in bulk
documents = [
{ index: { _index: index_name, _id: '200' } },
{ first_name: 'James', last_name: 'Rodriguez', gpa: 3.91, grad_year: 2019},
{ index: { _index: index_name, _id: '300' } },
{ first_name: 'Nikki', last_name: 'Wolf', gpa: 3.87, grad_year: 2020}
]
client.bulk(body: documents, refresh: true)
# Get all documents in the index
response = client.search(index: index_name)
puts 'All documents in the index after bulk upload:'
puts MultiJson.dump(response, pretty: "true")
# Search for a document using a multi_match query
puts 'Searching for documents that match "James":'
q = 'James'
query = {
'size': 5,
'query': {
'multi_match': {
'query': q,
'fields': ['first_name', 'last_name^2']
}
}
}
response = client.search(
body: query,
index: index_name
)
puts MultiJson.dump(response, pretty: "true")
# Delete the document
response = client.delete(
index: index_name,
id: id,
refresh: true
)
response = client.search(index: index_name)
puts 'Documents in the index after one document was deleted:'
puts MultiJson.dump(response, pretty: "true")
# Delete multiple documents
actions = [
{ delete: { _index: index_name, _id: 200 } },
{ delete: { _index: index_name, _id: 300 } }
]
client.bulk(body: actions, refresh: true)
response = client.search(index: index_name)
puts 'Documents in the index after all documents were deleted:'
puts MultiJson.dump(response, pretty: "true")
# Bulk several operations together
actions = [
{ index: { _index: index_name, _id: 100, data: { first_name: 'Paulo', last_name: 'Santos', gpa: 3.29, grad_year: 2022 } } },
{ index: { _index: index_name, _id: 200, data: { first_name: 'Shirley', last_name: 'Rodriguez', gpa: 3.92, grad_year: 2020 } } },
{ index: { _index: index_name, _id: 300, data: { first_name: 'Akua', last_name: 'Mansa', gpa: 3.95, grad_year: 2022 } } },
{ index: { _index: index_name, _id: 400, data: { first_name: 'John', last_name: 'Stiles', gpa: 3.72, grad_year: 2019 } } },
{ index: { _index: index_name, _id: 500, data: { first_name: 'Li', last_name: 'Juan', gpa: 3.94, grad_year: 2022 } } },
{ index: { _index: index_name, _id: 600, data: { first_name: 'Richard', last_name: 'Roe', gpa: 3.04, grad_year: 2020 } } },
{ update: { _index: index_name, _id: 100, data: { doc: { gpa: 3.73 } } } },
{ delete: { _index: index_name, _id: 200 } }
]
client.bulk(body: actions, refresh: true)
puts 'All documents in the index after bulk operations with scrolling:'
response = client.search(index: index_name, scroll: '2m', size: 2)
while response['hits']['hits'].size.positive?
scroll_id = response['_scroll_id']
puts(response['hits']['hits'].map { |doc| [doc['_source']['first_name'] + ' ' + doc['_source']['last_name']] })
response = client.scroll(scroll: '1m', body: { scroll_id: scroll_id })
end
# Multi search
actions = [
{},
{query: {range: {gpa: {gt: 3.9}}}},
{},
{query: {range: {gpa: {lt: 3.1}}}}
]
response = client.msearch(index: index_name, body: actions)
puts 'Multi search results:'
puts MultiJson.dump(response, pretty: "true")
# Boolean query
query = {
'query': {
'bool': {
'filter': {
'term': {
'grad_year': 2022
}
}
}
},
'sort': {
'last_name': {
'order': 'asc'
}
}
}
response = client.search(index: index_name, from: 0, size: 10, body: query)
puts 'Boolean query search results:'
puts MultiJson.dump(response, pretty: "true")
# Delete the index
puts 'Deleting the index:'
response = client.indices.delete(index: index_name)
puts MultiJson.dump(response, pretty: "true")
copy
Ruby AWS Sigv4 Client
The opensearch-aws-sigv4 gem provides the OpenSearch::Aws::Sigv4Client
class, which has all features of OpenSearch::Client
. The only difference between these two clients is that OpenSearch::Aws::Sigv4Client
requires an instance of Aws::Sigv4::Signer
during instantiation to authenticate with AWS:
require 'opensearch-aws-sigv4'
require 'aws-sigv4'
signer = Aws::Sigv4::Signer.new(service: 'es',
region: 'us-west-2',
access_key_id: 'key_id',
secret_access_key: 'secret')
client = OpenSearch::Aws::Sigv4Client.new({ log: true }, signer)
client.cluster.health
client.transport.reload_connections!
client.search q: 'test'
copy