最佳实践

性能最佳实践

halt-polling

概述

在计算资源充足的情况下,为使虚拟机获得接近物理机的性能,可以使用halt-polling特性。没有使用halt-polling特性时,当vCPU空闲退出后,主机会把CPU资源分配给其他进程使用。当主机开启halt-polling特性时,虚拟机vCPU处于空闲时会polling一段时间,polling的时间由具体配置决定。若该vCPU在polling期间被唤醒,可以不从主机侧调度而继续运行,减少了调度流程的开销,从而在一定程度上提高了虚拟机系统的性能。

最佳实践 - 图1 说明:
halt-polling的机制保证虚拟机的vCPU线程的及时响应,但在虚拟机空载的时候,主机侧也会polling,导致主机看到vCPU所在CPU占用率比较高,而实际虚拟机内部CPU占用率并不高。

操作指导

系统默认开启了halt-polling特性,polling的时间默认为500000ns。用户可以通过文件halt_poll_ns内容动态修改vCPU用于halt-polling的时间,单位为ns。

例如设置polling时间为400000,使用root用户执行命令如下:

  1. # echo 400000 > /sys/module/kvm/parameters/halt_poll_ns

IOThread配置

概述

KVM平台上,对虚拟磁盘的读写在后端默认由QEMU主线程负责处理。这样会造成如下问题:

  • 虚拟机的I/O请求都由一个QEMU主线程进行处理,因此单线程的CPU利用率成为虚拟机I/O性能的瓶颈。
  • 虚拟机I/O在QEMU主线程处理时会持有QEMU全局锁(qemu_global_mutex),一旦I/O处理耗时较长,QEMU主线程长时间占有全局锁,会导致虚拟机vCPU无法正常调度,影响虚拟机整体性能及用户体验。

可以为virtio-blk磁盘或者virtio-scsi控制器配置IOThread属性,在QEMU后端单独开辟IOThread线程处理虚拟磁盘读写请求,IOThread线程和virtio-blk磁盘或virtio-scsi控制器可配置成一对一的映射关系,尽可能地减少对QEMU主线程的影响,提高虚拟机整体I/O性能,提升用户体验。

配置说明

使用IOThread线程处理虚拟机磁盘读写请求,需要修改虚拟机配置,这里给出具体的配置说明。

  • 配置虚拟机高性能虚拟磁盘的总数。例如通过配置IOThread线程的总数为4:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
    2. <name>VMName</name>
    3. <memory>4194304</memory>
    4. <currentMemory>4194304</currentMemory>
    5. <vcpu>4</vcpu>
    6. <iothreads>4</iothreads>
  • 给virtio-blk磁盘配置IOThread属性。<iothread>表示IOThread线程编号,编号从1开始配置,最大为的配置值,且编号不能重复使用。例如将编号为2的IOThread配置给virtio-blk磁盘使用:

    1. <disk type='file' device='disk'>
    2. <driver name='qemu' type='raw' cache='none' io='native' iothread='2'/>
    3. <source file='/path/test.raw'/>
    4. <target dev='vdb' bus='virtio'/>
    5. <address type='pci' domain='0x0000' bus='0x00' slot='0x05' function='0x0'/>
    6. </disk>
  • 给virtio-scsi控制器配置IOThread属性。例如将编号为2的IOThread配置给virtio-scsi控制器使用:

    1. <controller type='scsi' index='0' model='virtio-scsi'>
    2. <driver iothread='2'/>
    3. <alias name='scsi0'/>
    4. <address type='pci' domain='0x0000' bus='0x00' slot='0x04' function='0x0'/>
    5. </controller>
  • IOThread线程绑定物理CPU

    虚拟磁盘IOThread线程的绑核配置,将IOThread线程绑定到用户指定的物理CPU范围内,不影响vCPU线程的资源占用诉求。表示IOThread线程编号,表示绑定的物理CPU编号。

    1. <cputune>
    2. <iothreadpin iothread='1' cpuset='1-3,5,7-12' />
    3. <iothreadpin iothread='2' cpuset='1-3,5,7-12' />
    4. </cputune>

裸设备映射

概述

配置虚拟机存储设备时,除了将文件配置给虚拟机作为虚拟磁盘使用外,还可以将块设备(物理LUN、逻辑卷等)直接配置给虚拟机使用,从而提升存储性能。该配置方式称为裸设备映射。在该配置方式下,虚拟磁盘向虚拟机呈现为一个SCSI设备,且支持大部分SCSI命令。

裸设备映射根据后端实现特点,分为虚拟裸设备映射和物理裸设备映射,物理裸设备映射相对虚拟裸设备映射具有更优秀的性能和更丰富的SCSI命令,但物理裸设备映射需要将整块SCSI磁盘挂载给虚拟机使用,如果使用分区、逻辑卷等方式配置,虚拟机将无法识别。

配置示例

裸设备映射需要修改虚拟机配置文件,这里给出配置示例。

  • 虚拟裸设备映射

    将主机上存在的SCSI磁盘“/dev/sdc”挂载给虚拟机作为虚拟裸设备的配置示例如下:

    1. <domain type='kvm'>
    2. <devices>
    3. ...
    4. <controller type='scsi' model='virtio-scsi' index='0'/>
    5. <disk type='block' device='disk'>
    6. <driver name='qemu' type='raw' cache='none' io='native'/>
    7. <source dev='/dev/sdc'/>
    8. <target dev='sdc' bus='scsi'/>
    9. <address type='drive' controller='0' bus='0' target='0' unit='0'/>
    10. </disk>
    11. ...
    12. </devices>
    13. </domain>
  • 物理裸设备映射

    将主机上存在的SCSI磁盘“/dev/sdc”挂载给虚拟机作为物理裸设备的配置示例如下:

    1. <domain type='kvm'>
    2. <devices>
    3. ...
    4. <controller type='scsi' model='virtio-scsi' index='0'/>
    5. <disk type='block' device='lun' rawio='yes'>
    6. <driver name='qemu' type='raw' cache='none' io='native'/>
    7. <source dev='/dev/sdc'/>
    8. <target dev='sdc' bus='scsi'/>
    9. <address type='drive' controller='0' bus='0' target='0' unit='0'/>
    10. </disk>
    11. ...
    12. </devices>
    13. </domain>

kworker隔离绑定

概述

kworker是Linux内核实现的per-CPU线程,用来执行系统中的workqueue请求。kworker线程会和vCPU线程争抢物理核资源,导致虚拟化业务性能抖动。为了使虚拟机能够稳定的运行,减少kworker线程对虚拟机的干扰,可以将主机上的kworker线程绑定到特定的CPU上运行。

操作步骤

用户可以通过修改/sys/devices/virtual/workqueue/cpumask文件,将workqueue中的任务绑定到cpumask中指定的CPU上。cpumask中的掩码以十六进制表示,例如将kworker绑定到CPU0~CPU7上,对应掩码为ff,使用root用户执行命令如下:

  1. # echo ff > /sys/devices/virtual/workqueue/cpumask

内存大页

概述

相比传统的4K内存分页,openEuler也支持2MB/1GB的大内存分页。内存大页可以有效减少TLB miss,显著提升内存访问密集型业务的性能。openEuler使用两种技术来实现内存大页。

  • 静态大页

    静态大页要求宿主机操作系统在加载前提前预留一个静态大页池,虚拟机创建时通过修改xml配置文件的方式,指定虚拟机的内存从静态大页池中分配。静态大页能保证虚拟机的所有内存在host上始终以大页形式存在,保证物理连续,但增加了部署的困难,修改静态大页池的页面大小后需要重启host才能生效。静态大页的页面大小支持2M或1G。

  • 透明大页

    如果开启透明大页模式THP(Transparent Huge Pages),虚拟机分配内存时自动选择可用的2M连续页,同时自动完成大页的拆分合并,当没有可用的2M连续页时,它会选择可用的64K(AArch64架构)或4K(x86_64架构)页面进行分配。透明大页的好处是不需要用户感知,同时能尽量使用2M大页以提升内存访问性能。

在虚拟机完全使用静态大页的场景下,可以通过关闭透明大页的方法,减少宿主机操作系统的开销,以便虚拟机获得更稳定的性能。

操作指导

  • 使用静态大页

    在创建虚拟机之前通过修改XML的方式,为虚拟机配置使用静态大页。

    1. <memoryBacking>
    2. <hugepages>
    3. <page size='1' unit='GiB'/>
    4. </hugepages>
    5. </memoryBacking>

    以上XML片段表示为虚拟机配置1G静态大页。

    1. <memoryBacking>
    2. <hugepages>
    3. <page size='2' unit='MiB'/>
    4. </hugepages>
    5. </memoryBacking>

    以上XML片段表示为虚拟机配置2M静态大页。

  • 使用透明大页

    通过sysfs可以动态开启使用透明大页:

    1. # echo always > /sys/kernel/mm/transparent_hugepage/enabled

    动态关闭使用透明大页:

    1. # echo never > /sys/kernel/mm/transparent_hugepage/enabled

PV-qspinlock

概述

PV-qspinlock主要是针对虚拟化CPU超分场景自旋锁的优化,允许hypervisor将处于锁上下文中的vCPU置于block状态,并在锁释放后将对应的vCPU唤醒,在超分场景下能够更好地利用pCPU资源,对于编译的应用场景有一定的优化,可以减少编译应用的时长。

操作指导

修改虚拟机/boot/efi/EFI/openEuler/grub.cfg配置文件,在命令行启动参数添加arm_pvspin,重启虚拟机后生效。PV-qspinlock生效后,虚拟机内部使用dmesg命令可以查到如下日志打印:

  1. [ 0.000000] arm-pv: PV qspinlocks enabled

最佳实践 - 图2 说明:
PV-qspinlock仅限于宿主机和虚拟机操作系统均为openEuler 20.09及以上版本支持,且虚拟机内核编译选项需要配置CONFIG_PARAVIRT_SPINLOCKS=y(openEuler默认配置)。

Guest-Idle-Haltpoll

概述

为了保证公平性及降低功耗,当虚拟机vCPU空闲时,虚拟机将执行WFx/HLT指令退出到宿主机中,并触发上下文切换。宿主机将决定在物理CPU上调度其他进程或vCPU,或进入节能模式。但是,虚拟机和宿主机之间的切换、额外的上下文切换以及唤醒IPI中断开销较大,在频繁睡眠和唤醒的业务中该问题尤为突出。Guest-Idle-Haltpoll技术是指当虚拟机vCPU空闲时,不立刻执行WFx/HLT并发生VM-exit,而是在虚拟机内部轮询(polling)一段时间。在该时间段内,其他共享LLC的vCPU在该vCPU上的任务被唤醒不需要发送IPI中断,减少了发送和接收处理IPI的开销及虚拟机陷出(VM-exit)的开销,从而降低任务唤醒的时延。

最佳实践 - 图3 说明: 由于vCPU在虚拟机内部执行idle-haltpoll会增加vCPU在宿主机的CPU开销,所以开启该特性建议vCPU在宿主机独占物理核。

操作指导

Guest-Idle-Haltpoll特性默认关闭,这里给出开启该特性的操作指导。

  1. 使能Guest-Idle-Haltpoll特性。

    • 若宿主机处理器架构为x86,可以在宿主机的虚拟机XML中配置“hint-dedicated”使能该特性,通过虚拟机XML配置将vCPU独占物理核的状态传递给虚拟机。vCPU独占物理核的状态由宿主机保证。

      1. <domain type='kvm'>
      2. ...
      3. <features>
      4. <kvm>
      5. ...
      6. <hint-dedicated state='on'/>
      7. </kvm>
      8. </features>
      9. ...
      10. </domain>

      或者在虚拟机内核启动参数中配置“cpuidle_haltpoll.force=Y”强制开启,该方法不依赖宿主机配置vCPU独占物理核。

      1. cpuidle_haltpoll.force=Y
    • 若宿主机处理器架构为AArch64,只支持在虚拟机内核启动参数中配置“cpuidle_haltpoll.force=Y haltpoll.enable=Y”的方式使能该特性。

      1. cpuidle_haltpoll.force=Y haltpoll.enable=Y
  2. 确认Guest-Idle-Haltpoll特性是否生效。在虚拟机中执行如下命令,若返回haltpoll,说明特性已经生效。

    1. # cat /sys/devices/system/cpu/cpuidle/current_driver
  3. (可选)配置Guest-Idle-Haltpoll参数。 虚拟机的/sys/module/haltpoll/parameters/路径下提供了如下配置文件,用于调整配置参数,用户可以根据业务特点选择调整。

    • guest_halt_poll_ns: 全局参数,指vCPU空闲后polling的最大时长,默认值为200000(单位ns)。
    • guest_halt_poll_shrink: 当唤醒事件发生在全局guest_halt_poll_ns时间之后,用于收缩当前vCPU guest_halt_poll_ns的除数因子,默认值为2。
    • guest_halt_poll_grow: 当唤醒事件发生在当前vCPU guest_halt_poll_ns之后且在全局guest_halt_poll_ns之前,用于扩展当前vCPU guest_halt_poll_ns的乘数因子,默认值为2。
    • guest_halt_poll_grow_start: 当系统空闲时,每个vCPU的guest_halt_poll_ns最终会达到零。该参数用于设置当前vCPU guest_halt_poll_ns的初始值,以便vCPU polling时长的收缩和扩展。默认值为50000(单位ns)。
    • guest_halt_poll_allow_shrink: 允许每个vCPU guest_halt_poll_ns收缩的开关,默认值是Y(Y表示允许收缩,N表示禁止收缩)。

    可以使用root权限,参考如下命令修改参数值。其中 value 表示需要设置的参数值, configFile 为对应的配置文件。

    1. # echo value > /sys/module/haltpoll/parameters/configFile

    例如设置全局guest_halt_poll_ns为200000ns的命令如下:

    1. # echo 200000 > /sys/module/haltpoll/parameters/guest_halt_poll_ns

Nvme磁盘直通

概述

设备直通技术是一种基于硬件的虚拟化解决方案,通过该技术,虚拟机可以直接连接到指定的物理直通设备上。对于用户来说,如果需要提升虚拟机存储性能,可以采用将 Nvme 磁盘通过 PCI 直通技术直通给虚拟机的办法,从而获得更高的性能表现。

操作指导

  1. 使用前准备

    • 确认 Guest OS 内安装 Nvme 磁盘供应商所提供的驱动程序,否则 Nvme 磁盘无法正常工作。
    • 确认 Host OS 开启CPU的 VT-d 和 VT-x 支持。
    • 确认 Host OS 开启内核的 IOMMU 功能。
    • 确认 Host OS 开启内核的中断重映射功能。
  2. 获取 Nvme 磁盘的 PCI BDF 信息

    在Host上通过 lspci 命令获取主机上pci设备的资源列表,具体命令如下所示。

    1. # lspci -vmm
    2. Slot: 81:00.1
    3. Class: Non-Volatile memory controller
    4. ...

    命令回显其中的 Slot 选项及对应了 Nvme 磁盘的 PCI BDF 号,以上方命令为例,每个值的对应关系即81-bus号,00-slot号,1-function号。

  3. 挂载 PCI 直通 Nvme 磁盘至虚拟机中

    创建虚拟机时,在其对应的 xml 配置文件中加入 PCI Nvme 磁盘直通的配置选项。具体配置文件如下所示

    1. <hostdev mode='subsystem' type='pci' managed='yes'>
    2. <source>
    3. <address domain='0x0000' bus='0x81' slot='0x00' function='0x1' />
    4. </source>
    5. </hostdev>
    • hostdev.source.address.domain: Host OS 上 PCI 设备的 domain 号。
    • hostdev.source.address.bus: Host OS 上 PCI 设备的 bus 号。
    • hostdev.source.address.slot: Host OS 上 PCI 设备的 slot 号。
    • hostdev.source.address.function: Host OS 上 PCI 设备的 function 号。
  4. 指定 Nvme 磁盘的 PCI bar 空间

    为了进一步将 Nvme 磁盘的性能发挥到极致,需要指定直通 Nvme 磁盘在 Guest OS 内 PCI MSI-X 中断的 Bar 空间。具体配置如下。

    1. <hostdev mode='subsystem' type='pci' managed='yes'>
    2. <source>
    3. <address domain='0x0000' bus='0x01' slot='0x00' function='0x0' />
    4. </source>
    5. <alias name='ua-sm2262'/>
    6. <address type='pci' domain='0x0000' bus='0x02' slot='0x00' function='0x0'/>
    7. </hostdev>
    8. <qemu:commandline>
    9. <qemu:arg value='-set'/>
    10. <qemu:arg value='device.ua-sm2262.x-msix-relocation=bar2'/>
    11. </qemu:commandline>

    以上xml配置将直通的 Nvme 磁盘的中断信息处理指定在第2号 Bar 上,增加该项配置可以使 Guest OS 内的 Nvme 磁盘性能达到与 Host OS 上的 Nvme 磁盘性能几乎一致。

安全最佳实践

Libvirt鉴权

简介

用户使用libvirt远程调用功能时,如果不进行任何鉴权校验,所有连接到主机所在网络的第三方程序都可以通过libvirt的远程调用操作虚拟机,存在安全隐患。为了提升系统安全性,openEuler提供了libvirt鉴权功能,即用户通过libvirt远程调用操作虚拟机前,必须经过身份校验,只有特定用户允许访问虚拟机,从而保护组网中的虚拟机。

开启libvirt鉴权

openEuler默认关闭libvirt远程调用功能,这里给出开启libvirt远程调用和libvirt鉴权功能的方法。

  1. 使用root用户登录主机。
  2. 修改libvirt服务配置文件/etc/libvirt/libvirtd.conf,开启libvirt远程调用和libvirt鉴权功能。例如使用基于SASL(Simple Authentication and Security Layer)协议的TCP远程调用配置参考如下:

    1. # 传输层安全协议,0表示关闭,1表示开启,由用户自行配置
    2. listen_tls = 0
    3. # 开启基于TCP的远程调用,开启libvirt远程调用和libvirt鉴权功能必须配置为1
    4. listen_tcp = 1
    5. # TCP远程调用所使用的协议,由用户自行配置,此处以sasl为例
    6. auth_tcp = "sasl"
  3. 修改/etc/sasl2/libvirt.conf配置文件,设置SASL认证机制和sasldb数据库。

    1. # sasl协议的认证机制
    2. mech_list: digest-md5
    3. # 存放用户和用户密码的数据库
    4. sasldb_path: /etc/libvirt/passwd.db
  4. 添加用于SASL验证的用户并设置其密码,假设用户名为userName,命令参考如下:

    1. # saslpasswd2 -a libvirt userName
    2. Password:
    3. Again (for verification):
  5. 修改/etc/sysconfig/libvirtd配置文件,开启libvirt侦听选项。

    1. LIBVIRTD_ARGS="--listen"
  6. 重启libvirtd服务,使修改生效。

    1. # systemctl restart libvirtd
  7. 确认libvirt远程调用的鉴权功能是否生效。根据提示输入用户名和密码能够成功连接libvirt服务,说明开启成功。

    1. # virsh -c qemu+tcp://192.168.0.1/system
    2. Please enter your authentication name: openeuler
    3. Please enter your password:
    4. Welcome to virsh, the virtualization interactive terminal.
    5. Type: 'help' for help with commands
    6. 'quit' to quit
    7. virsh #

管理SASL

这里给出管理SASL用户的操作,请使用root用户操作。

  • 查询数据库中存在的用户

    1. # sasldblistusers2 -f /etc/libvirt/passwd.db
    2. user@localhost.localdomain: userPassword
  • 从数据库中删除用户user

    1. # saslpasswd2 -a libvirt -d user

qemu-ga

概述

qemu-ga(Qemu Guest Agent)它是运行在虚拟机内部的守护进程,它允许用户在host OS上通过QEMU提供带外通道实现对guest OS的多种管理操作:包括文件操作(open、read、write、close,seek、flush等)、内部关机、虚拟机休眠(suspend-disk、suspend-ram、suspend-hybrid),获取虚拟机内部的信息(包括内存,CPU,网卡,OS等相关信息 )等。

在一些对安全要求较高的使用场景,为了防止虚拟机内部信息泄露,qemu-ga提供了黑名单功能,用户可以通过黑名单选择性屏蔽qemu-ga提供的部分功能。

最佳实践 - 图4 说明:
qemu-ga对应的安装包是qemu-guest-agent-xx.rpm,openEuler默认不安装。xx为实际版本号。

操作方法

请使用root用户按照如下操作步骤添加qemu-ga黑名单:

  1. 登录虚拟机,确定qemu-guest-agent服务存在且处于运行状态。

    1. # systemctl status qemu-guest-agent |grep Active
    2. Active: active (running) since Wed 2018-03-28 08:17:33 CST; 9h ago
  2. 查询qemu-ga哪些命令可以加入黑名单:

    1. # qemu-ga --blacklist ?
    2. guest-sync-delimited
    3. guest-sync
    4. guest-ping
    5. guest-get-time
    6. guest-set-time
    7. guest-info
    8. ...
  3. 设置黑名单。通过修改/usr/lib/systemd/system/qemu-guest-agent.service,将需要屏蔽的命令添加到该文件的—blacklist中,不同命令使用空格分隔。例如将guest-file-open和guest-file-close命令加入黑名单的配置参考如下:

    1. [Service]
    2. ExecStart=-/usr/bin/qemu-ga \
    3. --blacklist=guest-file-open guest-file-close
  4. 重启qemu-guest-agent服务:

    1. # systemctl daemon-reload
    2. # systemctl restart qemu-guest-agent
  5. 确认虚拟机开启qemu-ga黑名单功能是否生效,即qemu-ga进程配置的参数—blacklist是否正确。

    1. # ps -ef|grep qemu-ga|grep -E "blacklist=|b="
    2. root 727 1 0 08:17 ? 00:00:00 /usr/bin/qemu-ga --method=virtio-serial --path=/dev/virtio-ports/org.qemu.guest_agent.0 --blacklist=guest-file-open guest-file-close guest-file-read guest-file-write guest-file-seek guest-file-flush -F/etc/qemu-ga/fsfreeze-hook

    最佳实践 - 图5 说明:
    更多关于qemu-ga的资料可以参见https://wiki.qemu.org/Features/GuestAgent

sVirt保护

概述

在只使用自由访问控制DAC(Discretionary Acces Control)策略的虚拟化环境中,主机上运行的恶意虚拟机可能存在攻击hypervisor或其他虚拟机的情况。为了提升虚拟化场景的安全性,openEuler使用了sVirt保护。sVirt是基于SELinux,适用于KVM虚拟化场景的安全防护技术。虚拟机本质是主机操作系统上的普通进程,sVirt机制在hypervisor将虚拟机对应的QEMU进程进行SELinux标记分类,除了使用type表示虚拟化专有进程和文件,还用不同的的category(在seclevel区间)表示不同虚拟机,每个虚拟机只能访问自身相同category的文件设备,防止虚拟机访问非授权的主机或其他虚拟机的文件和设备,从而防止虚拟机逃逸,提升主机和虚拟机的安全性。

开启sVirt保护

一、使用root用户按照如下操作步骤开启主机的SELinux

  1. 登录主机。
  2. 开启主机SELinux功能。

    1. 修改系统启动的grub.cfg,将selinux设置为1。

      1. selinux=1
    2. 修改/etc/selinux/config,将SELINUX模式设置为enforcing。

      1. SELINUX=enforcing
  3. 重启主机。

    1. # reboot

二、创建开启sVirt功能的虚拟机

  1. 虚拟机配置文件中添加如下配置:

    1. <seclabel type='dynamic' model='selinux' relabel='yes'/>

    或确认没有下述配置:

    1. <seclabel type='none' model='selinux'/>
  2. 创建虚拟机。

    1. # virsh define openEulerVM.xml

三、确认sVirt开启成功

执行下述命令检查运行中的虚拟机QEMU进程是否已经启用sVirt防护,若存在”svirt_t:s0:c”表示已经启用sVirt防护。

  1. # ps -eZ|grep qemu |grep "svirt_t:s0:c"
  2. system_u:system_r:svirt_t:s0:c200,c947 11359 ? 00:03:59 qemu-kvm
  3. system_u:system_r:svirt_t:s0:c427,c670 13790 ? 19:02:07 qemu-kvm

虚拟机可信启动

概述

可信启动包含度量启动和远程证明。其中虚拟化组件主要提供度量启动功能,远程证明由用户自己在虚拟机中安装相关软件(RA client)及搭建远程证明服务器(RA server)进行使能。

度量启动的两个基本要素是信任根和信任链,其基本思想是首先在计算机系统中建立一个信任根,信任根的可信性由物理安全、技术安全和管理安全共同确保,即CRTM(Core Root of Trust for Measurement)。然后建立一条信任链,从信任根开始到BIOS/BootLoader、操作系统、再到应用,一级度量认证一级,一级信任一级,最终把这种信任扩展到整个系统。上述过程看起来如同一根链条一样环环相扣,因此称之为“信任链”。

CRTM是度量启动的根,是系统启动的首个组件,没有其它代码来检查CRTM本身的完整性。所以,作为信任链的起点,必须保证它是绝对可信的信任源。因此,技术上需要将CRTM设计成一段只读或更新严格受限的代码,抵御BIOS攻击,防止远程注入恶意代码或在操作系统上层修改启动代码。通常物理主机中由CPU中的微码作为CRTM,在虚拟化环境中,一般选择vBIOS的sec部分为CRTM。

启动过程中,前一个部件度量(计算HASH值)后一个部件,然后把度量值扩展入可信存储区例如TPM的PCR中。CRTM度量BootLoader把度量值扩展到PCR中,BootLoader度量OS把度量值扩展到PCR中。

配置vTPM设备,使能度量启动

一、安装swtpm和libtpms软件

swtpm提供了一个可集成到虚拟化环境中的TPM仿真器(TPM1.2和TPM2.0)。到目前为止,他已经集成到了QEMU中,同时也作为RunC中的原型系统。swtpm是利用libtpms来提供TPM1.2和TPM2.0的模拟功能。 目前openEuler 21.03 版本中提供了libtpms和swtpm的源,可以直接使用yum命令安装。

  1. # yum install libtpms swtpm swtpm-devel swtpm-tools

二、虚拟机配置vTPM设备

  1. AArch64虚拟机配置文件中添加如下配置:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
    2. ...
    3. <devices>
    4. ...
    5. <tpm model='tpm-tis-device'>
    6. <backend type='emulator' version='2.0'/>
    7. </tpm>
    8. ...
    9. </devices>
    10. ...
    11. </domain>

    x86虚拟机配置文件中添加如下配置:

    1. <domain type='kvm' xmlns:qemu='http://libvirt.org/schemas/domain/qemu/1.0'>
    2. ...
    3. <devices>
    4. ...
    5. <tpm model='tpm-tis'>
    6. <backend type='emulator' version='2.0'/>
    7. </tpm>
    8. ...
    9. </devices>
    10. ...
    11. </domain>

    最佳实践 - 图6 说明:
    目前,openEuler 20.09 版本 AArch64 架构上的虚拟机可信启动不支持 ACPI 特性,所以虚拟机请勿配置ACPI特性,否则启动虚拟机后无法识别vTPM设备。

  2. 创建虚拟机。

    1. # virsh define MeasuredBoot.xml
  3. 启动虚拟机

    启动虚拟机前需要使用chmod命令给目录/var/lib/swtpm-localca/赋予如下权限,否则libvirt无法拉起swtpm。

    1. # chmod -R 777 /var/lib/swtpm-localca/
    2. #
    3. # virsh start MeasuredbootVM

三、确认度量启动使能成功

度量启动功能使能与否由vBIOS决定,目前 openEuler 21.03 版本中的vBIOS已经具备了度量启动的能力。若宿主机采用其他版本的edk2组件,请确认其是否支持度量启动功能。

使用root用户登陆虚拟机,确认虚拟机中是否安装了tpm驱动,tpm2-tss协议栈及tpm2-tools工具。 openEuler 21.03 版本中默认安装了tpm驱动(tpm_tis.ko),tpm2-tss协议栈和tpm2-tools工具。若使用其他操作系统,可以使用如下命令检查是否安装了驱动和相关工具。

  1. # lsmod |grep tpm
  2. # tpm_tis 16384 0
  3. #
  4. # yum list installed | grep -E 'tpm2-tss|tpm2-tools'
  5. #
  6. # yum install tpm2-tss tpm2-tools

可以使用tpm2_pcrread(低版本tpm2_tools中使用tpm2_pcrlist)命令列出所有的pcr值。

  1. # tpm2_pcrread
  2. sha1 :
  3. 0 : fffdcae7cef57d93c5f64d1f9b7f1879275cff55
  4. 1 : 5387ba1d17bba5fdadb77621376250c2396c5413
  5. 2 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
  6. 3 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
  7. 4 : e5d40ace8bb38eb170c61682eb36a3020226d2c0
  8. 5 : 367f6ea79688062a6df5f4737ac17b69cd37fd61
  9. 6 : b2a83b0ebf2f8374299a5b2bdfc31ea955ad7236
  10. 7 : 518bd167271fbb64589c61e43d8c0165861431d8
  11. 8 : af65222affd33ff779780c51fa8077485aca46d9
  12. 9 : 5905ec9fb508b0f30b2abf8787093f16ca608a5a
  13. 10 : 0000000000000000000000000000000000000000
  14. 11 : 0000000000000000000000000000000000000000
  15. 12 : 0000000000000000000000000000000000000000
  16. 13 : 0000000000000000000000000000000000000000
  17. 14 : 0000000000000000000000000000000000000000
  18. 15 : 0000000000000000000000000000000000000000
  19. 16 : 0000000000000000000000000000000000000000
  20. 17 : ffffffffffffffffffffffffffffffffffffffff
  21. 18 : ffffffffffffffffffffffffffffffffffffffff
  22. 19 : ffffffffffffffffffffffffffffffffffffffff
  23. 20 : ffffffffffffffffffffffffffffffffffffffff
  24. 21 : ffffffffffffffffffffffffffffffffffffffff
  25. 22 : ffffffffffffffffffffffffffffffffffffffff
  26. 23 : 0000000000000000000000000000000000000000
  27. sha256 :
  28. 0 : d020873038268904688cfe5b8ccf8b8d84c1a2892fc866847355f86f8066ea2d
  29. 1 : 13cebccdb194dd916f2c0c41ec6832dfb15b41a9eb5229d33a25acb5ebc3f016
  30. 2 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
  31. 3 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
  32. 4 : 07f9074ccd4513ef1cafd7660f9afede422b679fd8ad99d25c0659eba07cc045
  33. 5 : ba34c80668f84407cd7f498e310cc4ac12ec6ec43ea8c93cebb2a688cf226aff
  34. 6 : 3d458cfe55cc03ea1f443f1562beec8df51c75e14a9fcf9a7234a13f198e7969
  35. 7 : 65caf8dd1e0ea7a6347b635d2b379c93b9a1351edc2afc3ecda700e534eb3068
  36. 8 : f440af381b644231e7322babfd393808e8ebb3a692af57c0b3a5d162a6e2c118
  37. 9 : 54c08c8ba4706273f53f90085592f7b2e4eaafb8d433295b66b78d9754145cfc
  38. 10 : 0000000000000000000000000000000000000000000000000000000000000000
  39. 11 : 0000000000000000000000000000000000000000000000000000000000000000
  40. 12 : 0000000000000000000000000000000000000000000000000000000000000000
  41. 13 : 0000000000000000000000000000000000000000000000000000000000000000
  42. 14 : 0000000000000000000000000000000000000000000000000000000000000000
  43. 15 : 0000000000000000000000000000000000000000000000000000000000000000
  44. 16 : 0000000000000000000000000000000000000000000000000000000000000000
  45. 17 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  46. 18 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  47. 19 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  48. 20 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  49. 21 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  50. 22 : ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
  51. 23 : 0000000000000000000000000000000000000000000000000000000000000000