前言

v8 是 Chrome 的 JavaScript 引擎,其中关于数组的排序完全采用了 JavaScript 实现。

排序采用的算法跟数组的长度有关,当数组长度小于等于 10 时,采用插入排序,大于 10 的时候,采用快速排序。(当然了,这种说法并不严谨)。

我们先来看看插入排序和快速排序。

插入排序

原理

将第一个元素视为有序序列,遍历数组,将之后的元素依次插入这个构建的有序序列中。

图示

插入排序

实现

  1. function insertionSort(arr) {
  2. for (var i = 1; i < arr.length; i++) {
  3. var element = arr[i];
  4. for (var j = i - 1; j >= 0; j--) {
  5. var tmp = arr[j];
  6. var order = tmp - element;
  7. if (order > 0) {
  8. arr[j + 1] = tmp;
  9. } else {
  10. break;
  11. }
  12. }
  13. arr[j + 1] = element;
  14. }
  15. return arr;
  16. }
  17.  
  18. var arr = [6, 5, 4, 3, 2, 1];
  19. console.log(insertionSort(arr));

时间复杂度

时间复杂度是指执行算法所需要的计算工作量,它考察当输入值大小趋近无穷时的情况,一般情况下,算法中基本操作重复执行的次数是问题规模 n 的某个函数。

最好情况:数组升序排列,时间复杂度为:O(n)

最坏情况:数组降序排列,时间复杂度为:O(n²)

稳定性

稳定性,是指相同的元素在排序后是否还保持相对的位置。

要注意的是对于不稳定的排序算法,只要举出一个实例,即可说明它的不稳定性;而对于稳定的排序算法,必须对算法进行分析从而得到稳定的特性。

比如 [3, 3, 1],排序后,还是 [3, 3, 1],但是其实是第二个 3 在 第一个 3 前,那这就是不稳定的排序算法。

插入排序是稳定的算法。

优势

当数组是快要排序好的状态或者问题规模比较小的时候,插入排序效率更高。这也是为什么 v8 会在数组长度小于等于 10 的时候采用插入排序。

快速排序

原理

  • 选择一个元素作为"基准"
  • 小于"基准"的元素,都移到"基准"的左边;大于"基准"的元素,都移到"基准"的右边。
  • 对"基准"左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

示例

示例和下面的实现方式来源于阮一峰老师的《快速排序(Quicksort)的Javascript实现》

以数组 [85, 24, 63, 45, 17, 31, 96, 50] 为例:

第一步,选择中间的元素 45 作为"基准"。(基准值可以任意选择,但是选择中间的值比较容易理解。)

quick 第一步

第二步,按照顺序,将每个元素与"基准"进行比较,形成两个子集,一个"小于45",另一个"大于等于45"。

quick 第二步

第三步,对两个子集不断重复第一步和第二步,直到所有子集只剩下一个元素为止。

quick 第三步

实现

  1. var quickSort = function(arr) {
  2.   if (arr.length <= 1) { return arr; }
  3. // 取数组的中间元素作为基准
  4.   var pivotIndex = Math.floor(arr.length / 2);
  5.   var pivot = arr.splice(pivotIndex, 1)[0];
  6.  
  7.   var left = [];
  8.   var right = [];
  9.  
  10.   for (var i = 0; i < arr.length; i++){
  11.     if (arr[i] < pivot) {
  12.       left.push(arr[i]);
  13.     } else {
  14.       right.push(arr[i]);
  15.     }
  16.   }
  17.   return quickSort(left).concat([pivot], quickSort(right));
  18. };

然而这种实现方式需要额外的空间用来储存左右子集,所以还有一种原地(in-place)排序的实现方式。

图示

我们来看看原地排序的实现图示:

快速排序

为了让大家看明白快速排序的原理,我调慢了执行速度。

在这张示意图里,基准的取值规则是取最左边的元素,黄色代表当前的基准,绿色代表小于基准的元素,紫色代表大于基准的元素。

我们会发现,绿色的元素会紧挨在基准的右边,紫色的元素会被移到后面,然后交换基准和绿色的最后一个元素,此时,基准处于正确的位置,即前面的元素都小于基准值,后面的元素都大于基准值。然后再对前面的和后面的多个元素取基准,做排序。

in-place 实现

  1. function quickSort(arr) {
  2. // 交换元素
  3. function swap(arr, a, b) {
  4. var temp = arr[a];
  5. arr[a] = arr[b];
  6. arr[b] = temp;
  7. }
  8.  
  9. function partition(arr, left, right) {
  10. var pivot = arr[left];
  11. var storeIndex = left;
  12.  
  13. for (var i = left + 1; i <= right; i++) {
  14. if (arr[i] < pivot) {
  15. swap(arr, ++storeIndex, i);
  16. }
  17. }
  18.  
  19. swap(arr, left, storeIndex);
  20.  
  21. return storeIndex;
  22. }
  23.  
  24. function sort(arr, left, right) {
  25. if (left < right) {
  26. var storeIndex = partition(arr, left, right);
  27. sort(arr, left, storeIndex - 1);
  28. sort(arr, storeIndex + 1, right);
  29. }
  30. }
  31.  
  32. sort(arr, 0, arr.length - 1);
  33.  
  34. return arr;
  35. }
  36.  
  37. console.log(quickSort(6, 7, 3, 4, 1, 5, 9, 2, 8))

稳定性

快速排序是不稳定的排序。如果要证明一个排序是不稳定的,你只用举出一个实例就行。

所以我们举一个呗~

就以数组 [1, 2, 3, 3, 4, 5] 为例,因为基准的选择不确定,假如选定了第三个元素(也就是第一个 3) 为基准,所有小于 3 的元素在前面,大于等于 3 的在后面,排序的结果没有问题。可是如果选择了第四个元素(也就是第二个 3 ),小于 3 的在基准前面,大于等于 3 的在基准后面,第一个 3 就会被移动到 第二个 3 后面,所以快速排序是不稳定的排序。

时间复杂度

阮一峰老师的实现中,基准取的是中间元素,而原地排序中基准取最左边的元素。快速排序的关键点就在于基准的选择,选取不同的基准时,会有不同性能表现。

快速排序的时间复杂度最好为 O(nlogn),可是为什么是 nlogn 呢?来一个并不严谨的证明:

在最佳情况下,每一次都平分整个数组。假设数组有 n 个元素,其递归的深度就为 log2n + 1,时间复杂度为 O(n)[(log2n + 1)],因为时间复杂度考察当输入值大小趋近无穷时的情况,所以会忽略低阶项,时间复杂度为:o(nlog2n)。

如果一个程序的运行时间是对数级的,则随着 n 的增大程序会渐渐慢下来。如果底数是 10,lg1000 等于 3,如果 n 为 1000000,lgn 等于 6,仅为之前的两倍。如果底数为 2,log21000 的值约为 10,log21000000 的值约为 19,约为之前的两倍。我们可以发现任意底数的一个对数函数其实都相差一个常数倍而已。所以我们认为 O(logn)已经可以表达所有底数的对数了,所以时间复杂度最后为: O(nlogn)。

而在最差情况下,如果对一个已经排序好的数组,每次选择基准元素时总是选择第一个元素或者最后一个元素,那么每次都会有一个子集是空的,递归的层数将达到 n,最后导致算法的时间复杂度退化为 O(n²)。

这也充分说明了一个基准的选择是多么的重要,而 v8 为了提高性能,就对基准的选择做了很多优化。

v8 基准选择

v8 选择基准的原理是从头和尾之外再选择一个元素,然后三个值排序取中间值。

当数组长度大于 10 但是小于 1000 的时候,取中间位置的元素,实现代码为:

  1. // 基准的下标
  2. // >> 1 相当于除以 2 (忽略余数)
  3. third_index = from + ((to - from) >> 1);

当数组长度大于 1000 的时候,每隔 200 ~ 215 个元素取一个值,然后将这些值进行排序,取中间值的下标,实现的代码为:

  1. // 简单处理过
  2. function GetThirdIndex(a, from, to) {
  3. var t_array = new Array();
  4.  
  5. // & 位运算符
  6. var increment = 200 + ((to - from) & 15);
  7.  
  8. var j = 0;
  9. from += 1;
  10. to -= 1;
  11.  
  12. for (var i = from; i < to; i += increment) {
  13. t_array[j] = [i, a[i]];
  14. j++;
  15. }
  16. // 对随机挑选的这些值进行排序
  17. t_array.sort(function(a, b) {
  18. return comparefn(a[1], b[1]);
  19. });
  20. // 取中间值的下标
  21. var third_index = t_array[t_array.length >> 1][0];
  22. return third_index;
  23. }

也许你会好奇 200 + ((to - from) & 15) 是什么意思?

& 表示是按位与,对整数操作数逐位执行布尔与操作。只有两个操作数中相对应的位都是 1,结果中的这一位才是 1。

15 & 127 为例:

15 二进制为: (0000 1111)

127 二进制为:(1111 1111)

按位与结果为:(0000 1111)= 15

所以 15 & 127 的结果为 15

注意 15 的二进制为: 1111,这就意味着任何和 15 按位与的结果都会小于或者等于 15,这才实现了每隔 200 ~ 215 个元素取一个值。

v8 源码

终于到了看源码的时刻!源码地址为:https://github.com/v8/v8/blob/master/src/js/array.js#L758

  1. function InsertionSort(a, from, to) {
  2. for (var i = from + 1; i < to; i++) {
  3. var element = a[i];
  4. for (var j = i - 1; j >= from; j--) {
  5. var tmp = a[j];
  6. var order = comparefn(tmp, element);
  7. if (order > 0) {
  8. a[j + 1] = tmp;
  9. } else {
  10. break;
  11. }
  12. }
  13. a[j + 1] = element;
  14. }
  15. };
  16.  
  17.  
  18. function QuickSort(a, from, to) {
  19.  
  20. var third_index = 0;
  21. while (true) {
  22. // Insertion sort is faster for short arrays.
  23. if (to - from <= 10) {
  24. InsertionSort(a, from, to);
  25. return;
  26. }
  27. if (to - from > 1000) {
  28. third_index = GetThirdIndex(a, from, to);
  29. } else {
  30. third_index = from + ((to - from) >> 1);
  31. }
  32. // Find a pivot as the median of first, last and middle element.
  33. var v0 = a[from];
  34. var v1 = a[to - 1];
  35. var v2 = a[third_index];
  36.  
  37. var c01 = comparefn(v0, v1);
  38. if (c01 > 0) {
  39. // v1 < v0, so swap them.
  40. var tmp = v0;
  41. v0 = v1;
  42. v1 = tmp;
  43. } // v0 <= v1.
  44. var c02 = comparefn(v0, v2);
  45. if (c02 >= 0) {
  46. // v2 <= v0 <= v1.
  47. var tmp = v0;
  48. v0 = v2;
  49. v2 = v1;
  50. v1 = tmp;
  51. } else {
  52. // v0 <= v1 && v0 < v2
  53. var c12 = comparefn(v1, v2);
  54. if (c12 > 0) {
  55. // v0 <= v2 < v1
  56. var tmp = v1;
  57. v1 = v2;
  58. v2 = tmp;
  59. }
  60. }
  61.  
  62. // v0 <= v1 <= v2
  63. a[from] = v0;
  64. a[to - 1] = v2;
  65.  
  66. var pivot = v1;
  67.  
  68. var low_end = from + 1; // Upper bound of elements lower than pivot.
  69. var high_start = to - 1; // Lower bound of elements greater than pivot.
  70.  
  71. a[third_index] = a[low_end];
  72. a[low_end] = pivot;
  73.  
  74. // From low_end to i are elements equal to pivot.
  75. // From i to high_start are elements that haven't been compared yet.
  76.  
  77. partition: for (var i = low_end + 1; i < high_start; i++) {
  78. var element = a[i];
  79. var order = comparefn(element, pivot);
  80. if (order < 0) {
  81. a[i] = a[low_end];
  82. a[low_end] = element;
  83. low_end++;
  84. } else if (order > 0) {
  85. do {
  86. high_start--;
  87. if (high_start == i) break partition;
  88. var top_elem = a[high_start];
  89. order = comparefn(top_elem, pivot);
  90. } while (order > 0);
  91.  
  92. a[i] = a[high_start];
  93. a[high_start] = element;
  94. if (order < 0) {
  95. element = a[i];
  96. a[i] = a[low_end];
  97. a[low_end] = element;
  98. low_end++;
  99. }
  100. }
  101. }
  102.  
  103.  
  104. if (to - high_start < low_end - from) {
  105. QuickSort(a, high_start, to);
  106. to = low_end;
  107. } else {
  108. QuickSort(a, from, low_end);
  109. from = high_start;
  110. }
  111. }
  112. }
  113.  
  114. var arr = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0];
  115.  
  116. function comparefn(a, b) {
  117. return a - b
  118. }
  119.  
  120. QuickSort(arr, 0, arr.length)
  121. console.log(arr)

我们以数组 [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] 为例,分析执行的过程。

1.执行 QuickSort 函数 参数 from 值为 0,参数 to 的值 11。

2.10 < to - from < 1000 第三个基准元素的下标为 (0 + 11 >> 1) = 5,基准值 a[5] 为 5。

3.比较 a[0] a[10] a[5] 的值,然后根据比较结果修改数组,数组此时为 [0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 10]

4.将基准值和数组的第(from + 1)个即数组的第二个元素互换,此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],此时在基准值 5 前面的元素肯定是小于 5 的,因为第三步已经做了一次比较。后面的元素是未排序的。

我们接下来要做的就是把后面的元素中小于 5 的全部移到 5 的前面。

5.然后我们进入 partition 循环,我们依然以这个数组为例,单独抽出来写个 demo 讲一讲

  1. // 假设代码执行到这里,为了方便演示,我们直接设置 low_end 等变量的值
  2. // 可以直接复制到浏览器中查看数组变换效果
  3. var a = [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10]
  4. var low_end = 1;
  5. var high_start = 10;
  6. var pivot = 5;
  7.  
  8. console.log('起始数组为', a)
  9.  
  10. partition: for (var i = low_end + 1; i < high_start; i++) {
  11.  
  12. var element = a[i];
  13. console.log('循环当前的元素为:', a[i])
  14. var order = element - pivot;
  15.  
  16. if (order < 0) {
  17. a[i] = a[low_end];
  18. a[low_end] = element;
  19. low_end++;
  20. console.log(a)
  21. }
  22. else if (order > 0) {
  23. do {
  24. high_start--;
  25. if (high_start == i) break partition;
  26. var top_elem = a[high_start];
  27. order = top_elem - pivot;
  28. } while (order > 0);
  29.  
  30. a[i] = a[high_start];
  31. a[high_start] = element;
  32.  
  33. console.log(a)
  34.  
  35. if (order < 0) {
  36. element = a[i];
  37. a[i] = a[low_end];
  38. a[low_end] = element;
  39. low_end++;
  40. }
  41. console.log(a)
  42. }
  43. }
  44.  
  45. console.log('最后的结果为', a)
  46. console.log(low_end)
  47. console.log(high_start)

6.此时数组为 [0, 5, 8, 7, 6, 9, 4, 3, 2, 1, 10],循环从第三个元素开始,a[i] 的值为 8,因为大于基准值 5,即 order > 0,开始执行 do while 循环,do while 循环的目的在于倒序查找元素,找到第一个小于基准值的元素,然后让这个元素跟 a[i] 的位置交换。第一个小于基准值的元素为 1,然后 1 与 8 交换,数组变成 [0, 5, 1, 7, 6, 9, 4, 3, 2, 8, 10]。high_start 的值是为了记录倒序查找到哪里了。

7.此时 a[i] 的值变成了 1,然后让 1 跟 基准值 5 交换,数组变成了 [0, 1, 5, 7, 6, 9, 4, 3, 2, 8, 10],low_end 的值加 1,low_end 的值是为了记录基准值的所在位置。

8.循环接着执行,遍历第四个元素 7,跟第 6、7 的步骤一致,数组先变成 [0, 1, 5, 2, 6, 9, 4, 3, 7, 8, 10],再变成 [0, 1, 2, 5, 6, 9, 4, 3, 7, 8, 10]

9.遍历第五个元素 6,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 5, 3, 9, 4, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 5, 9, 4, 6, 7, 8, 10]

10.遍历第六个元素 9,跟第 6、7 的步骤一致,数组先变成 [0, 1, 2, 3, 5, 4, 9, 6, 7, 8, 10],再变成 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10]

11.在下一次遍历中,因为 i == high_start,意味着正序和倒序的查找终于找到一起了,后面的元素肯定都是大于基准值的,此时退出循环

12.遍历后的结果为 [0, 1, 2, 3, 4, 5, 9, 6, 7, 8, 10],在基准值 5 前面的元素都小于 5,后面的元素都大于 5,然后我们分别对两个子集进行 QuickSort

13.此时 low_end 值为 5,high_start 值为 6,to 的值依然是 10,from 的值依然是 0,to - high_start < low_end - from 的结果为 true,我们对 QuickSort(a, 6, 10),即对后面的元素进行排序,但是注意,在新的 QuickSort 中,因为 to - from 的值小于 10,所以这一次其实是采用了插入排序。所以准确的说,当数组长度大于 10 的时候,v8 采用了快速排序和插入排序的混合排序方法。

14.然后 to = low_end 即设置 to 为 5,因为 while(true) 的原因,会再执行一遍,to - from 的值为 5,执行 InsertionSort(a, 0, 5),即对基准值前面的元素执行一次插入排序。

15.因为在 to - from <= 10 的判断中,有 return 语句,所以 while 循环结束。

16.v8 在对数组进行了一次快速排序后,然后对两个子集分别进行了插入排序,最终修改数组为正确排序后的数组。

比较

最后来张示意图感受下插入排序和快速排序:

插入排序和快速排序

图片来自于 https://www.toptal.com/developers/sorting-algorithms

专题系列

JavaScript专题系列目录地址:https://github.com/mqyqingfeng/Blog

JavaScript专题系列预计写二十篇左右,主要研究日常开发中一些功能点的实现,比如防抖、节流、去重、类型判断、拷贝、最值、扁平、柯里、递归、乱序、排序等,特点是研(chao)究(xi) underscore 和 jQuery 的实现方式。

如果有错误或者不严谨的地方,请务必给予指正,十分感谢。如果喜欢或者有所启发,欢迎 star,对作者也是一种鼓励。