Generate SQL according to the data source
Generate SparkSQL and JdbcSQL based on data source information, including DDL, DML, and DQL.
Interface address: /api/rest_j/v1/metadataQuery/getSparkSql
Request method: GET
Request data type: application/x-www-form-urlencoded
Request parameters:
Parameter name | Description | Required | Data type |
---|---|---|---|
dataSourceName | data source name | is | String |
system | system name | is | String |
database | database name | is | String |
table | table name | is | String |
Example response:
{
"method": null,
"status": 0,
"message": "OK",
"data": {
"sparkSql": {
"ddl": "CREATE TEMPORARY TABLE test USING org.apache.spark.sql.jdbc OPTIONS ( url 'jdbc:mysql://localhost:3306/test', dbtable 'test', user 'root', password 'password' )",
"dml": "INSERT INTO test SELECT * FROM ${resultTable}",
"dql": "SELECT id,name FROM test"
}
}
}
Currently supports jdbc, kafka, elasticsearch, mongo data source, you can register spark table according to SparkSQLDDL for query
Interface address: /api/rest_j/v1/metadataQuery/getJdbcSql
Request method: GET
Request data type: application/x-www-form-urlencoded
Request parameters:
Parameter name | Description | Required | Data type |
---|---|---|---|
dataSourceName | data source name | is | String |
system | system name | is | String |
database | database name | is | String |
table | table name | is | String |
Example response:
{
"method": null,
"status": 0,
"message": "OK",
"data": {
"jdbcSql": {
"ddl": "CREATE TABLE `test` (\n\t `id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT 'The column name is id',\n\t `name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci NOT NULL COMMENT 'The column name is name',\n\t PRIMARY KEY (`id`)\n\t) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci",
"dml": "INSERT INTO test SELECT * FROM ${resultTable}",
"dql": "SELECT id,name FROM test"
}
}
}
Currently supports JDBC data sources, such as: mysql, oracle, postgres, etc. JdbcSQLDDL can be used for front-end display.
- You need to register the data source first
Define DDL_SQL_TEMPLATE to obtain data source information for replacement
public static final String JDBC_DDL_SQL_TEMPLATE =
"CREATE TEMPORARY TABLE %s"
+ "USING org.apache.spark.sql.jdbc"
+ "OPTIONS ("
+ "url '%s',"
+ "dbtable '%s',"
+ " user '%s',"
+ "password '%s'"
+ ")";
Splicing DDL according to table schema information
public String generateJdbcDdlSql(String database, String table) {
StringBuilder ddl = new StringBuilder();
ddl.append("CREATE TABLE ").append(String.format("%s.%s", database, table)).append(" (");
try {
List < MetaColumnInfo > columns = getColumns(database, table);
if (CollectionUtils. isNotEmpty(columns)) {
for (MetaColumnInfo column: columns) {
ddl.append("\n\t").append(column.getName()).append(" ").append(column.getType());
if (column. getLength() > 0) {
ddl.append("(").append(column.getLength()).append(")");
}
if (!column. isNullable()) {
ddl.append("NOT NULL");
}
ddl.append(",");
}
String primaryKeys =
columns. stream()
.filter(MetaColumnInfo::isPrimaryKey)
.map(MetaColumnInfo::getName)
.collect(Collectors.joining(", "));
if (StringUtils. isNotBlank(primaryKeys)) {
ddl.append(String.format("\n\tPRIMARY KEY (%s),", primaryKeys));
}
ddl. deleteCharAt(ddl. length() - 1);
}
} catch (Exception e) {
LOG.warn("Fail to get Sql columns(Failed to get the field list)");
}
ddl.append("\n)");
return ddl. toString();
}
Some data sources support direct access to DDL
mysql
SHOW CREATE TABLE 'table'
oracle
SELECT DBMS_METADATA.GET_DDL('TABLE', 'table', 'database') AS DDL FROM DUAL