Inline value classes

有时候,业务逻辑需要围绕某种类型创建包装器。然而,由于额外的堆内存分配问题, 它会引入运行时的性能开销。此外,如果被包装的类型是原生类型,性能的损失是很糟糕的, 因为原生类型通常在运行时就进行了大量优化,然而他们的包装器却没有得到任何特殊的处理。

为了解决这类问题,Kotlin 引入了一种被称为内联类的特殊类。 Inline classes are a subset of value-based classes. They don’t have an identity and can only hold values.

To declare an inline class, use the value modifier before the name of the class:

  1. value class Password(private val s: String)

To declare an inline class for the JVM backend, use the value modifier along with the @JvmInline annotation before the class declaration:

  1. // For JVM backends
  2. @JvmInline
  3. value class Password(private val s: String)

内联类必须含有唯一的一个属性在主构造函数中初始化。在运行时, 将使用这个唯一属性来表示内联类的实例(关于运行时的内部表达请参阅下文):

  1. // 不存在 'Password' 类的真实实例对象
  2. // 在运行时,'securePassword' 仅仅包含 'String'
  3. val securePassword = Password("Don't try this in production")

这就是内联类的主要特性,它灵感来源于 inline 这个名称:类的数据被内联到该类使用的地方(类似于内联函数中的代码被内联到该函数调用的地方)。

成员

内联类支持普通类中的一些功能。特别是,内联类可以声明属性与函数, have an init block and secondary constructors:

  1. @JvmInline
  2. value class Person(private val fullName: String) {
  3. init {
  4. require(fullName.isNotEmpty()) {
  5. "Full name shouldn't be empty"
  6. }
  7. }
  8. constructor(firstName: String, lastName: String) : this("$firstName $lastName") {
  9. require(lastName.isNotBlank()) {
  10. "Last name shouldn't be empty"
  11. }
  12. }
  13. val length: Int
  14. get() = fullName.length
  15. fun greet() {
  16. println("Hello, $fullName")
  17. }
  18. }
  19. fun main() {
  20. val name1 = Person("Kotlin", "Mascot")
  21. val name2 = Person("Kodee")
  22. name1.greet() // greet` 函数会作为一个静态方法被调用
  23. println(name2.length) // 属性的 getter 会作为一个静态方法被调用
  24. }

Inline class properties cannot have backing fields. They can only have simple computable properties (no lateinit/delegated properties).

继承

内联类允许去继承接口

  1. interface Printable {
  2. fun prettyPrint(): String
  3. }
  4. @JvmInline
  5. value class Name(val s: String) : Printable {
  6. override fun prettyPrint(): String = "Let's $s!"
  7. }
  8. fun main() {
  9. val name = Name("Kotlin")
  10. println(name.prettyPrint()) // 仍然会作为一个静态方法被调用
  11. }

禁止内联类参与到类的继承关系结构中。这就意味着内联类不能继承其他的类而且始终是 final 的。

表示方式

在生成的代码中,Kotlin 编译器为每个内联类保留一个包装器。内联类的实例可以在运行时表示为包装器或者基础类型。这就类似于 Int 可以表示为原生类型 int 或者包装器 Integer

为了生成性能最优的代码,Kotlin 编译更倾向于使用基础类型而不是包装器。 然而,有时候使用包装器是必要的。一般来说,只要将内联类用作另一种类型, 它们就会被装箱。

  1. interface I
  2. @JvmInline
  3. value class Foo(val i: Int) : I
  4. fun asInline(f: Foo) {}
  5. fun <T> asGeneric(x: T) {}
  6. fun asInterface(i: I) {}
  7. fun asNullable(i: Foo?) {}
  8. fun <T> id(x: T): T = x
  9. fun main() {
  10. val f = Foo(42)
  11. asInline(f) // 拆箱操作: 用作 Foo 本身
  12. asGeneric(f) // 装箱操作: 用作泛型类型 T
  13. asInterface(f) // 装箱操作: 用作类型 I
  14. asNullable(f) // 装箱操作: 用作不同于 Foo 的可空类型 Foo?
  15. // 在下面这里例子中,'f' 首先会被装箱(当它作为参数传递给 'id' 函数时)然后又被拆箱(当它从'id'函数中被返回时)
  16. // 最后, 'c' 中就包含了被拆箱后的内部表达(也就是 '42'), 和 'f' 一样
  17. val c = id(f)
  18. }

因为内联类既可以表示为基础类型有可以表示为包装器,引用相等对于内联类而言毫无意义,因此这也是被禁止的。

Inline classes can also have a generic type parameter as the underlying type. In this case, the compiler maps it to Any? or, generally, to the upper bound of the type parameter.

  1. @JvmInline
  2. value class UserId<T>(val value: T)
  3. fun compute(s: UserId<String>) {} // compiler generates fun compute-<hashcode>(s: Any?)

名字修饰

由于内联类被编译为其基础类型,因此可能会导致各种模糊的错误,例如意想不到的平台签名冲突:

  1. @JvmInline
  2. value class UInt(val x: Int)
  3. // 在 JVM 平台上被表示为'public final void compute(int x)'
  4. fun compute(x: Int) { }
  5. // 同理,在 JVM 平台上也被表示为'public final void compute(int x)'!
  6. fun compute(x: UInt) { }

为了缓解这种问题,一般会通过在函数名后面拼接一些稳定的哈希码来修饰函数名。 因此,fun compute(x: UInt) 将会被表示为 public final void compute-<hashcode>(int x),以此来解决冲突的问题。

Calling from Java code

You can call functions that accept inline classes from Java code. To do so, you should manually disable mangling: add the @JvmName annotation before the function declaration:

  1. @JvmInline
  2. value class UInt(val x: Int)
  3. fun compute(x: Int) { }
  4. @JvmName("computeUInt")
  5. fun compute(x: UInt) { }

内联类与类型别名

初看起来,内联类似乎与类型别名非常相似。实际上,两者似乎都引入了一种新的类型,并且都在运行时表示为基础类型。

然而,关键的区别在于类型别名与其基础类型(以及具有相同基础类型的其他类型别名)是赋值兼容的,而内联类却不是这样。

换句话说,内联类引入了一个真实的新类型,与类型别名正好相反,类型别名仅仅是为现有的类型取了个新的替代名称 (别名):

  1. typealias NameTypeAlias = String
  2. @JvmInline
  3. value class NameInlineClass(val s: String)
  4. fun acceptString(s: String) {}
  5. fun acceptNameTypeAlias(n: NameTypeAlias) {}
  6. fun acceptNameInlineClass(p: NameInlineClass) {}
  7. fun main() {
  8. val nameAlias: NameTypeAlias = ""
  9. val nameInlineClass: NameInlineClass = NameInlineClass("")
  10. val string: String = ""
  11. acceptString(nameAlias) // 正确: 传递别名类型的实参替代函数中基础类型的形参
  12. acceptString(nameInlineClass) // 错误: 不能传递内联类的实参替代函数中基础类型的形参
  13. // And vice versa:
  14. acceptNameTypeAlias(string) // 正确: 传递基础类型的实参替代函数中别名类型的形参
  15. acceptNameInlineClass(string) // 错误: 不能传递基础类型的实参替代函数中内联类类型的形参
  16. }

Inline classes and delegation

Implementation by delegation to inlined value of inlined class is allowed with interfaces:

  1. interface MyInterface {
  2. fun bar()
  3. fun foo() = "foo"
  4. }
  5. @JvmInline
  6. value class MyInterfaceWrapper(val myInterface: MyInterface) : MyInterface by myInterface
  7. fun main() {
  8. val my = MyInterfaceWrapper(object : MyInterface {
  9. override fun bar() {
  10. // body
  11. }
  12. })
  13. println(my.foo()) // prints "foo"
  14. }