开始探索 GreptimeDB

从这里开始探索 GreptimeDB 强大的核心功能。

安装

用户可以在下载页面通过我们发布的测试版本尝试使用 GreptimeDB。

我们先通过最简单的配置来开始。有关 GreptimeDB 中可用的所有配置选项的详细列表,请参考配置文档

二进制

使用 Linux 和 macOS 的用户,可以通过以下命令下载 greptime binary 的最新版本:

shell

  1. curl -fsSL \
  2. https://raw.githubusercontent.com/greptimeteam/greptimedb/develop/scripts/install.sh | sh

下载完成后,binary 文件 greptime 将存储在用户当前的目录中。

用户可以在单机模式下运行 GreptimeDB:

shell

  1. ./greptime standalone start

Docker

请确保已经安装了 Docker。如果还没有安装,可以参考 Docker 官方的文档进行安装。

shell

  1. docker run -p 4000-4003:4000-4003 \
  2. -p 4242:4242 -v "$(pwd)/greptimedb:/tmp/greptimedb" \
  3. --name greptime --rm \
  4. greptime/greptimedb standalone start \
  5. --http-addr 0.0.0.0:4000 \
  6. --rpc-addr 0.0.0.0:4001 \
  7. --mysql-addr 0.0.0.0:4002 \
  8. --postgres-addr 0.0.0.0:4003 \
  9. --opentsdb-addr 0.0.0.0:4242

数据将会存储在当前目录下的 greptimedb/ 目录中。

如果用户想要使用另一个版本的 GreptimeDB 镜像,可以从我们的 GreptimeDB Dockerhub 下载。

注意事项

如果正在使用小于 v23.0 的 Docker 版本,由于旧版本的 Docker Engine 中存在 bug,所以当用户尝试运行上面的命令时,可能会遇到权限不足的问题。

用户可以:

  1. 设置 --security-opt seccomp=unconfined

    shell

    1. docker run --security-opt seccomp=unconfined -p 4000-4003:4000-4003 \
    2. -p 4242:4242 -v "$(pwd)/greptimedb:/tmp/greptimedb" \
    3. --name greptime --rm \
    4. greptime/greptimedb standalone start \
    5. --http-addr 0.0.0.0:4000 \
    6. --rpc-addr 0.0.0.0:4001 \
    7. --mysql-addr 0.0.0.0:4002 \
    8. --postgres-addr 0.0.0.0:4003 \
    9. --opentsdb-addr 0.0.0.0:4242
  2. 将 Docker 版本升级到 v23.0.0 或更高;

连接

GreptimeDB 支持多种协议。这里使用 MySQL 客户端示例。

sql

  1. mysql -h 127.0.0.1 -P 4002

建表

注意: GreptimeDB 提供了一种 schemaless 的数据写入方法,不用像使用其他协议那样手动创建表。详情请参见 自动生成表结构

现在我们通过 MySQL 创建一个表。先创建 system_metrics 表,其中包含系统资源指标,包括 CPU /内存/磁盘的使用,这些数据每 5 秒就会被抓取一次。

sql

  1. CREATE TABLE IF NOT EXISTS system_metrics (
  2. host STRING,
  3. idc STRING,
  4. cpu_util DOUBLE,
  5. memory_util DOUBLE,
  6. disk_util DOUBLE,
  7. ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
  8. PRIMARY KEY(host, idc),
  9. TIME INDEX(ts)
  10. );

Field 描述:

FieldTypeDescription
hoststringThe hostname
idcstringThe idc name where the host belongs to
cpu_utildoubleThe percent use of CPU
memory_utildoubleThe percent use of memory
disk_utildoubleThe percent use of disks
tstimestampTimestamp column incrementing
  • 如果用户使用其他协议,该表可以自动创建。请参考 Create Table
  • 关于创建表的 SQL 信息,请参考 CREATE
  • 关于数据类型,请参考数据类型

数据写入

使用 INSERT 语句是向表添加数据的一个简单方法。通过下面的语句,我们向 system_metrics 表插入了九条记录。

sql

  1. INSERT INTO system_metrics
  2. VALUES
  3. ("host1", "idc_a", 11.8, 10.3, 10.3, 1667446797450),
  4. ("host1", "idc_a", 80.1, 70.3, 90.0, 1667446797550),
  5. ("host1", "idc_b", 50.0, 66.7, 40.6, 1667446797650),
  6. ("host1", "idc_b", 51.0, 66.5, 39.6, 1667446797750),
  7. ("host1", "idc_b", 52.0, 66.9, 70.6, 1667446797850),
  8. ("host1", "idc_b", 53.0, 63.0, 50.6, 1667446797950),
  9. ("host1", "idc_b", 78.0, 66.7, 20.6, 1667446798050),
  10. ("host1", "idc_b", 68.0, 63.9, 50.6, 1667446798150),
  11. ("host1", "idc_b", 90.0, 39.9, 60.6, 1667446798250);

关于 INSERT 语句的更多信息,请参考 INSERT

数据查询

想要从 system_metrics 表中选择数据,可以使用 SELECT 语句:

sql

  1. SELECT * FROM system_metrics;

查询结果如下:

  1. +-------+-------+----------+-------------+-----------+---------------------+
  2. | host | idc | cpu_util | memory_util | disk_util | ts |
  3. +-------+-------+----------+-------------+-----------+---------------------+
  4. | host1 | idc_a | 11.8 | 10.3 | 10.3 | 2022-11-03 03:39:57 |
  5. | host1 | idc_a | 80.1 | 70.3 | 90 | 2022-11-03 03:39:57 |
  6. | host1 | idc_b | 50 | 66.7 | 40.6 | 2022-11-03 03:39:57 |
  7. | host1 | idc_b | 51 | 66.5 | 39.6 | 2022-11-03 03:39:57 |
  8. | host1 | idc_b | 52 | 66.9 | 70.6 | 2022-11-03 03:39:57 |
  9. | host1 | idc_b | 53 | 63 | 50.6 | 2022-11-03 03:39:57 |
  10. | host1 | idc_b | 78 | 66.7 | 20.6 | 2022-11-03 03:39:58 |
  11. | host1 | idc_b | 68 | 63.9 | 50.6 | 2022-11-03 03:39:58 |
  12. | host1 | idc_b | 90 | 39.9 | 60.6 | 2022-11-03 03:39:58 |
  13. +-------+-------+----------+-------------+-----------+---------------------+
  14. 9 rows in set (0.00 sec)

用户可以使用 count() 函数获取表格中所有行的数量:

sql

  1. SELECT count(*) FROM system_metrics;
  1. +-----------------+
  2. | COUNT(UInt8(1)) |
  3. +-----------------+
  4. | 9 |
  5. +-----------------+

avg() 函数返回特定字段的平均值:

sql

  1. SELECT avg(cpu_util) FROM system_metrics;
  1. +------------------------------+
  2. | AVG(system_metrics.cpu_util) |
  3. +------------------------------+
  4. | 59.32222222222222 |
  5. +------------------------------+

使用 GROUP BY 子句,将具有相同数值的行分组为汇总行。

按 idc 分组的平均内存使用量:

sql

  1. SELECT idc, avg(memory_util) FROM system_metrics GROUP BY idc;
  1. +-------+---------------------------------+
  2. | idc | AVG(system_metrics.memory_util) |
  3. +-------+---------------------------------+
  4. | idc_a | 40.3 |
  5. | idc_b | 61.942857142857136 |
  6. +-------+---------------------------------+
  7. 2 rows in set (0.03 sec)

关于 SELECT 语句的更多信息,请查看 SELECT 文件。

Visualize data

可视化在有效利用时间序列数据方面发挥着关键作用。为了帮助用户充分利用 GreptimeDB 的各种功能,Greptime 提供了一个简单的 dashboard

Dashboard 自 GreptimeDB v0.2.0 版本以来已经嵌入到 GreptimeDB 的 binary 文件中。在启动 GreptimeDB后,可以通过 HTTP 端点 http://localhost:4000/dashboard 访问 dashboard。当前版本的 dashboard 支持 MySQL 和 Python 查询,不久将支持 PromQL。

将 SQL 写入命令文本,然后单击 RUN ALL,我们将获取 system_metrics 中的所有数据。

  1. SELECT * FROM system_metrics;

dashboard-select

我们提供不同种类的图表,可以根据不同的场景进行选择。当用户有足够的数据时,图表的内容将更加丰富。

linescatter

我们将持续开发和迭代这个开源项目,并计划将时间序列数据应用于监测、分析和其他相关领域的扩展。

Next steps

至此我们展示了 GreptimeDB 的基本功能,更多的用户指南请查阅以下文档。