查询外部数据

对文件进行查询

目前,我们支持 ParquetCSVNDJson 格式文件的查询。

Taxi Zone Lookup Table 数据为例。

bash

  1. curl "https://d37ci6vzurychx.cloudfront.net/misc/taxi+_zone_lookup.csv" -o /tmp/taxi+_zone_lookup.csv

创建一个外部表:

sql

  1. CREATE EXTERNAL TABLE taxi_zone_lookup with (location='/tmp/taxi+_zone_lookup.csv',format='csv');

检查外部表的组织和结构:

sql

  1. DESC TABLE taxi_zone_lookup;

sql

  1. +--------------------+----------------------+------+------+--------------------------+---------------+
  2. | Column | Type | Key | Null | Default | Semantic Type |
  3. +--------------------+----------------------+------+------+--------------------------+---------------+
  4. | LocationID | Int64 | | YES | | FIELD |
  5. | Borough | String | | YES | | FIELD |
  6. | Zone | String | | YES | | FIELD |
  7. | service_zone | String | | YES | | FIELD |
  8. | greptime_timestamp | TimestampMillisecond | PRI | NO | 1970-01-01 00:00:00+0000 | TIMESTAMP |
  9. +--------------------+----------------------+------+------+--------------------------+---------------+
  10. 4 rows in set (0.00 sec)

注意

在这里,你可能会注意到出现了一个 greptime_timestamp 列,这个列作为表的时间索引列,在文件中并不存在。这是因为在创建外部表时,我们没有指定时间索引列,greptime_timestamp 列为被自动添加作为时间索引列,并且默认值为 1970-01-01 00:00:00+0000。你可以在 create 文档中查找更多详情。

现在就可以查询外部表了:

sql

  1. SELECT `Zone`, `Borough` FROM taxi_zone_lookup LIMIT 5;

sql

  1. +-------------------------+---------------+
  2. | Zone | Borough |
  3. +-------------------------+---------------+
  4. | Newark Airport | EWR |
  5. | Jamaica Bay | Queens |
  6. | Allerton/Pelham Gardens | Bronx |
  7. | Alphabet City | Manhattan |
  8. | Arden Heights | Staten Island |
  9. +-------------------------+---------------+

对目录进行查询

首先下载一些数据:

bash

  1. mkdir /tmp/external
  2. curl "https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-01.parquet" -o /tmp/external/yellow_tripdata_2022-01.parquet
  3. curl "https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2022-02.parquet" -o /tmp/external/yellow_tripdata_2022-02.parquet

验证下载情况:

bash

  1. ls -l /tmp/external
  2. total 165368
  3. -rw-r--r-- 1 wenyxu wheel 38139949 Apr 28 14:35 yellow_tripdata_2022-01.parquet
  4. -rw-r--r-- 1 wenyxu wheel 45616512 Apr 28 14:36 yellow_tripdata_2022-02.parquet

创建外部表

sql

  1. CREATE EXTERNAL TABLE yellow_tripdata with(location='/tmp/external/',format='parquet');

执行查询:

sql

  1. SELECT count(*) FROM yellow_tripdata;

sql

  1. +-----------------+
  2. | COUNT(UInt8(1)) |
  3. +-----------------+
  4. | 5443362 |
  5. +-----------------+
  6. 1 row in set (0.48 sec)

sql

  1. SELECT * FROM yellow_tripdata LIMIT 5;

sql

  1. +----------+----------------------+-----------------------+-----------------+---------------+------------+--------------------+--------------+--------------+--------------+-------------+-------+---------+------------+--------------+-----------------------+--------------+----------------------+-------------+---------------------+
  2. | VendorID | tpep_pickup_datetime | tpep_dropoff_datetime | passenger_count | trip_distance | RatecodeID | store_and_fwd_flag | PULocationID | DOLocationID | payment_type | fare_amount | extra | mta_tax | tip_amount | tolls_amount | improvement_surcharge | total_amount | congestion_surcharge | airport_fee | greptime_timestamp |
  3. +----------+----------------------+-----------------------+-----------------+---------------+------------+--------------------+--------------+--------------+--------------+-------------+-------+---------+------------+--------------+-----------------------+--------------+----------------------+-------------+---------------------+
  4. | 1 | 2022-02-01 00:06:58 | 2022-02-01 00:19:24 | 1 | 5.4 | 1 | N | 138 | 252 | 1 | 17 | 1.75 | 0.5 | 3.9 | 0 | 0.3 | 23.45 | 0 | 1.25 | 1970-01-01 00:00:00 |
  5. | 1 | 2022-02-01 00:38:22 | 2022-02-01 00:55:55 | 1 | 6.4 | 1 | N | 138 | 41 | 2 | 21 | 1.75 | 0.5 | 0 | 6.55 | 0.3 | 30.1 | 0 | 1.25 | 1970-01-01 00:00:00 |
  6. | 1 | 2022-02-01 00:03:20 | 2022-02-01 00:26:59 | 1 | 12.5 | 1 | N | 138 | 200 | 2 | 35.5 | 1.75 | 0.5 | 0 | 6.55 | 0.3 | 44.6 | 0 | 1.25 | 1970-01-01 00:00:00 |
  7. | 2 | 2022-02-01 00:08:00 | 2022-02-01 00:28:05 | 1 | 9.88 | 1 | N | 239 | 200 | 2 | 28 | 0.5 | 0.5 | 0 | 3 | 0.3 | 34.8 | 2.5 | 0 | 1970-01-01 00:00:00 |
  8. | 2 | 2022-02-01 00:06:48 | 2022-02-01 00:33:07 | 1 | 12.16 | 1 | N | 138 | 125 | 1 | 35.5 | 0.5 | 0.5 | 8.11 | 0 | 0.3 | 48.66 | 2.5 | 1.25 | 1970-01-01 00:00:00 |
  9. +----------+----------------------+-----------------------+-----------------+---------------+------------+--------------------+--------------+--------------+--------------+-------------+-------+---------+------------+--------------+-----------------------+--------------+----------------------+-------------+---------------------+
  10. 5 rows in set (0.11 sec)

注意

查询结果中包含 greptime_timestamp 列的值,尽管它在原始文件中并不存在。所有这个列的值均为 1970-01-01 00:00:00+0000,这是因为我们在创建外部表时,自动添加列 greptime_timestamp,并且默认值为 1970-01-01 00:00:00+0000。你可以在 create 文档中查找更多详情。