TypedArray 视图
概述
ArrayBuffer
对象作为内存区域,可以存放多种类型的数据。同一段内存,不同数据有不同的解读方式,这就叫做“视图”(view)。ArrayBuffer
有两种视图,一种是TypedArray
视图,另一种是DataView
视图。前者的数组成员都是同一个数据类型,后者的数组成员可以是不同的数据类型。
目前,TypedArray
视图一共包括 9 种类型,每一种视图都是一种构造函数。
Int8Array
:8 位有符号整数,长度 1 个字节。Uint8Array
:8 位无符号整数,长度 1 个字节。Uint8ClampedArray
:8 位无符号整数,长度 1 个字节,溢出处理不同。Int16Array
:16 位有符号整数,长度 2 个字节。Uint16Array
:16 位无符号整数,长度 2 个字节。Int32Array
:32 位有符号整数,长度 4 个字节。Uint32Array
:32 位无符号整数,长度 4 个字节。Float32Array
:32 位浮点数,长度 4 个字节。Float64Array
:64 位浮点数,长度 8 个字节。
这 9 个构造函数生成的数组,统称为TypedArray
视图。它们很像普通数组,都有length
属性,都能用方括号运算符([]
)获取单个元素,所有数组的方法,在它们上面都能使用。普通数组与 TypedArray 数组的差异主要在以下方面。
- TypedArray 数组的所有成员,都是同一种类型。
- TypedArray 数组的成员是连续的,不会有空位。
- TypedArray 数组成员的默认值为 0。比如,
new Array(10)
返回一个普通数组,里面没有任何成员,只是 10 个空位;new Uint8Array(10)
返回一个 TypedArray 数组,里面 10 个成员都是 0。 - TypedArray 数组只是一层视图,本身不储存数据,它的数据都储存在底层的
ArrayBuffer
对象之中,要获取底层对象必须使用buffer
属性。
构造函数
TypedArray 数组提供 9 种构造函数,用来生成相应类型的数组实例。
构造函数有多种用法。
(1)TypedArray(buffer, byteOffset=0, length?)
同一个ArrayBuffer
对象之上,可以根据不同的数据类型,建立多个视图。
// 创建一个8字节的ArrayBuffer
const b = new ArrayBuffer(8);
// 创建一个指向b的Int32视图,开始于字节0,直到缓冲区的末尾
const v1 = new Int32Array(b);
// 创建一个指向b的Uint8视图,开始于字节2,直到缓冲区的末尾
const v2 = new Uint8Array(b, 2);
// 创建一个指向b的Int16视图,开始于字节2,长度为2
const v3 = new Int16Array(b, 2, 2);
上面代码在一段长度为 8 个字节的内存(b
)之上,生成了三个视图:v1
、v2
和v3
。
视图的构造函数可以接受三个参数:
- 第一个参数(必需):视图对应的底层
ArrayBuffer
对象。 - 第二个参数(可选):视图开始的字节序号,默认从 0 开始。
- 第三个参数(可选):视图包含的数据个数,默认直到本段内存区域结束。
因此,v1
、v2
和v3
是重叠的:v1[0]
是一个 32 位整数,指向字节 0 ~字节 3;v2[0]
是一个 8 位无符号整数,指向字节 2;v3[0]
是一个 16 位整数,指向字节 2 ~字节 3。只要任何一个视图对内存有所修改,就会在另外两个视图上反应出来。
注意,byteOffset
必须与所要建立的数据类型一致,否则会报错。
const buffer = new ArrayBuffer(8);
const i16 = new Int16Array(buffer, 1);
// Uncaught RangeError: start offset of Int16Array should be a multiple of 2
上面代码中,新生成一个 8 个字节的ArrayBuffer
对象,然后在这个对象的第一个字节,建立带符号的 16 位整数视图,结果报错。因为,带符号的 16 位整数需要两个字节,所以byteOffset
参数必须能够被 2 整除。
如果想从任意字节开始解读ArrayBuffer
对象,必须使用DataView
视图,因为TypedArray
视图只提供 9 种固定的解读格式。
(2)TypedArray(length)
视图还可以不通过ArrayBuffer
对象,直接分配内存而生成。
const f64a = new Float64Array(8);
f64a[0] = 10;
f64a[1] = 20;
f64a[2] = f64a[0] + f64a[1];
上面代码生成一个 8 个成员的Float64Array
数组(共 64 字节),然后依次对每个成员赋值。这时,视图构造函数的参数就是成员的个数。可以看到,视图数组的赋值操作与普通数组的操作毫无两样。
(3)TypedArray(typedArray)
TypedArray 数组的构造函数,可以接受另一个TypedArray
实例作为参数。
const typedArray = new Int8Array(new Uint8Array(4));
上面代码中,Int8Array
构造函数接受一个Uint8Array
实例作为参数。
注意,此时生成的新数组,只是复制了参数数组的值,对应的底层内存是不一样的。新数组会开辟一段新的内存储存数据,不会在原数组的内存之上建立视图。
const x = new Int8Array([1, 1]);
const y = new Int8Array(x);
x[0] // 1
y[0] // 1
x[0] = 2;
y[0] // 1
上面代码中,数组y
是以数组x
为模板而生成的,当x
变动的时候,y
并没有变动。
如果想基于同一段内存,构造不同的视图,可以采用下面的写法。
const x = new Int8Array([1, 1]);
const y = new Int8Array(x.buffer);
x[0] // 1
y[0] // 1
x[0] = 2;
y[0] // 2
(4)TypedArray(arrayLikeObject)
构造函数的参数也可以是一个普通数组,然后直接生成TypedArray
实例。
const typedArray = new Uint8Array([1, 2, 3, 4]);
注意,这时TypedArray
视图会重新开辟内存,不会在原数组的内存上建立视图。
上面代码从一个普通的数组,生成一个 8 位无符号整数的TypedArray
实例。
TypedArray 数组也可以转换回普通数组。
const normalArray = [...typedArray];
// or
const normalArray = Array.from(typedArray);
// or
const normalArray = Array.prototype.slice.call(typedArray);
数组方法
普通数组的操作方法和属性,对 TypedArray 数组完全适用。
TypedArray.prototype.copyWithin(target, start[, end = this.length])
TypedArray.prototype.entries()
TypedArray.prototype.every(callbackfn, thisArg?)
TypedArray.prototype.fill(value, start=0, end=this.length)
TypedArray.prototype.filter(callbackfn, thisArg?)
TypedArray.prototype.find(predicate, thisArg?)
TypedArray.prototype.findIndex(predicate, thisArg?)
TypedArray.prototype.forEach(callbackfn, thisArg?)
TypedArray.prototype.indexOf(searchElement, fromIndex=0)
TypedArray.prototype.join(separator)
TypedArray.prototype.keys()
TypedArray.prototype.lastIndexOf(searchElement, fromIndex?)
TypedArray.prototype.map(callbackfn, thisArg?)
TypedArray.prototype.reduce(callbackfn, initialValue?)
TypedArray.prototype.reduceRight(callbackfn, initialValue?)
TypedArray.prototype.reverse()
TypedArray.prototype.slice(start=0, end=this.length)
TypedArray.prototype.some(callbackfn, thisArg?)
TypedArray.prototype.sort(comparefn)
TypedArray.prototype.toLocaleString(reserved1?, reserved2?)
TypedArray.prototype.toString()
TypedArray.prototype.values()
上面所有方法的用法,请参阅数组方法的介绍,这里不再重复了。
注意,TypedArray 数组没有concat
方法。如果想要合并多个 TypedArray 数组,可以用下面这个函数。
function concatenate(resultConstructor, ...arrays) {
let totalLength = 0;
for (let arr of arrays) {
totalLength += arr.length;
}
let result = new resultConstructor(totalLength);
let offset = 0;
for (let arr of arrays) {
result.set(arr, offset);
offset += arr.length;
}
return result;
}
concatenate(Uint8Array, Uint8Array.of(1, 2), Uint8Array.of(3, 4))
// Uint8Array [1, 2, 3, 4]
另外,TypedArray 数组与普通数组一样,部署了 Iterator 接口,所以可以被遍历。
let ui8 = Uint8Array.of(0, 1, 2);
for (let byte of ui8) {
console.log(byte);
}
// 0
// 1
// 2
字节序
字节序指的是数值在内存中的表示方式。
const buffer = new ArrayBuffer(16);
const int32View = new Int32Array(buffer);
for (let i = 0; i < int32View.length; i++) {
int32View[i] = i * 2;
}
上面代码生成一个 16 字节的ArrayBuffer
对象,然后在它的基础上,建立了一个 32 位整数的视图。由于每个 32 位整数占据 4 个字节,所以一共可以写入 4 个整数,依次为 0,2,4,6。
如果在这段数据上接着建立一个 16 位整数的视图,则可以读出完全不一样的结果。
const int16View = new Int16Array(buffer);
for (let i = 0; i < int16View.length; i++) {
console.log("Entry " + i + ": " + int16View[i]);
}
// Entry 0: 0
// Entry 1: 0
// Entry 2: 2
// Entry 3: 0
// Entry 4: 4
// Entry 5: 0
// Entry 6: 6
// Entry 7: 0
由于每个 16 位整数占据 2 个字节,所以整个ArrayBuffer
对象现在分成 8 段。然后,由于 x86 体系的计算机都采用小端字节序(little endian),相对重要的字节排在后面的内存地址,相对不重要字节排在前面的内存地址,所以就得到了上面的结果。
比如,一个占据四个字节的 16 进制数0x12345678
,决定其大小的最重要的字节是“12”,最不重要的是“78”。小端字节序将最不重要的字节排在前面,储存顺序就是78563412
;大端字节序则完全相反,将最重要的字节排在前面,储存顺序就是12345678
。目前,所有个人电脑几乎都是小端字节序,所以 TypedArray 数组内部也采用小端字节序读写数据,或者更准确的说,按照本机操作系统设定的字节序读写数据。
这并不意味大端字节序不重要,事实上,很多网络设备和特定的操作系统采用的是大端字节序。这就带来一个严重的问题:如果一段数据是大端字节序,TypedArray 数组将无法正确解析,因为它只能处理小端字节序!为了解决这个问题,JavaScript 引入DataView
对象,可以设定字节序,下文会详细介绍。
下面是另一个例子。
// 假定某段buffer包含如下字节 [0x02, 0x01, 0x03, 0x07]
const buffer = new ArrayBuffer(4);
const v1 = new Uint8Array(buffer);
v1[0] = 2;
v1[1] = 1;
v1[2] = 3;
v1[3] = 7;
const uInt16View = new Uint16Array(buffer);
// 计算机采用小端字节序
// 所以头两个字节等于258
if (uInt16View[0] === 258) {
console.log('OK'); // "OK"
}
// 赋值运算
uInt16View[0] = 255; // 字节变为[0xFF, 0x00, 0x03, 0x07]
uInt16View[0] = 0xff05; // 字节变为[0x05, 0xFF, 0x03, 0x07]
uInt16View[1] = 0x0210; // 字节变为[0x05, 0xFF, 0x10, 0x02]
下面的函数可以用来判断,当前视图是小端字节序,还是大端字节序。
const BIG_ENDIAN = Symbol('BIG_ENDIAN');
const LITTLE_ENDIAN = Symbol('LITTLE_ENDIAN');
function getPlatformEndianness() {
let arr32 = Uint32Array.of(0x12345678);
let arr8 = new Uint8Array(arr32.buffer);
switch ((arr8[0]*0x1000000) + (arr8[1]*0x10000) + (arr8[2]*0x100) + (arr8[3])) {
case 0x12345678:
return BIG_ENDIAN;
case 0x78563412:
return LITTLE_ENDIAN;
default:
throw new Error('Unknown endianness');
}
}
总之,与普通数组相比,TypedArray 数组的最大优点就是可以直接操作内存,不需要数据类型转换,所以速度快得多。
BYTES_PER_ELEMENT 属性
每一种视图的构造函数,都有一个BYTES_PER_ELEMENT
属性,表示这种数据类型占据的字节数。
Int8Array.BYTES_PER_ELEMENT // 1
Uint8Array.BYTES_PER_ELEMENT // 1
Uint8ClampedArray.BYTES_PER_ELEMENT // 1
Int16Array.BYTES_PER_ELEMENT // 2
Uint16Array.BYTES_PER_ELEMENT // 2
Int32Array.BYTES_PER_ELEMENT // 4
Uint32Array.BYTES_PER_ELEMENT // 4
Float32Array.BYTES_PER_ELEMENT // 4
Float64Array.BYTES_PER_ELEMENT // 8
这个属性在TypedArray
实例上也能获取,即有TypedArray.prototype.BYTES_PER_ELEMENT
。
ArrayBuffer 与字符串的互相转换
ArrayBuffer
和字符串的相互转换,使用原生 TextEncoder
和 TextDecoder
方法。为了便于说明用法,下面的代码都按照 TypeScript 的用法,给出了类型签名。
/**
* Convert ArrayBuffer/TypedArray to String via TextDecoder
*
* @see https://developer.mozilla.org/en-US/docs/Web/API/TextDecoder
*/
function ab2str(
input: ArrayBuffer | Uint8Array | Int8Array | Uint16Array | Int16Array | Uint32Array | Int32Array,
outputEncoding: string = 'utf8',
): string {
const decoder = new TextDecoder(outputEncoding)
return decoder.decode(input)
}
/**
* Convert String to ArrayBuffer via TextEncoder
*
* @see https://developer.mozilla.org/zh-CN/docs/Web/API/TextEncoder
*/
function str2ab(input: string): ArrayBuffer {
const view = str2Uint8Array(input)
return view.buffer
}
/** Convert String to Uint8Array */
function str2Uint8Array(input: string): Uint8Array {
const encoder = new TextEncoder()
const view = encoder.encode(input)
return view
}
上面代码中,ab2str()
的第二个参数outputEncoding
给出了输出编码的编码,一般保持默认值(utf-8
),其他可选值参见官方文档或 Node.js 文档。
溢出
不同的视图类型,所能容纳的数值范围是确定的。超出这个范围,就会出现溢出。比如,8 位视图只能容纳一个 8 位的二进制值,如果放入一个 9 位的值,就会溢出。
TypedArray 数组的溢出处理规则,简单来说,就是抛弃溢出的位,然后按照视图类型进行解释。
const uint8 = new Uint8Array(1);
uint8[0] = 256;
uint8[0] // 0
uint8[0] = -1;
uint8[0] // 255
上面代码中,uint8
是一个 8 位视图,而 256 的二进制形式是一个 9 位的值100000000
,这时就会发生溢出。根据规则,只会保留后 8 位,即00000000
。uint8
视图的解释规则是无符号的 8 位整数,所以00000000
就是0
。
负数在计算机内部采用“2 的补码”表示,也就是说,将对应的正数值进行否运算,然后加1
。比如,-1
对应的正值是1
,进行否运算以后,得到11111110
,再加上1
就是补码形式11111111
。uint8
按照无符号的 8 位整数解释11111111
,返回结果就是255
。
一个简单转换规则,可以这样表示。
- 正向溢出(overflow):当输入值大于当前数据类型的最大值,结果等于当前数据类型的最小值加上余值,再减去 1。
- 负向溢出(underflow):当输入值小于当前数据类型的最小值,结果等于当前数据类型的最大值减去余值的绝对值,再加上 1。
上面的“余值”就是模运算的结果,即 JavaScript 里面的%
运算符的结果。
12 % 4 // 0
12 % 5 // 2
上面代码中,12 除以 4 是没有余值的,而除以 5 会得到余值 2。
请看下面的例子。
const int8 = new Int8Array(1);
int8[0] = 128;
int8[0] // -128
int8[0] = -129;
int8[0] // 127
上面例子中,int8
是一个带符号的 8 位整数视图,它的最大值是 127,最小值是-128。输入值为128
时,相当于正向溢出1
,根据“最小值加上余值(128 除以 127 的余值是 1),再减去 1”的规则,就会返回-128
;输入值为-129
时,相当于负向溢出1
,根据“最大值减去余值的绝对值(-129 除以-128 的余值的绝对值是 1),再加上 1”的规则,就会返回127
。
Uint8ClampedArray
视图的溢出规则,与上面的规则不同。它规定,凡是发生正向溢出,该值一律等于当前数据类型的最大值,即 255;如果发生负向溢出,该值一律等于当前数据类型的最小值,即 0。
const uint8c = new Uint8ClampedArray(1);
uint8c[0] = 256;
uint8c[0] // 255
uint8c[0] = -1;
uint8c[0] // 0
上面例子中,uint8C
是一个Uint8ClampedArray
视图,正向溢出时都返回 255,负向溢出都返回 0。
TypedArray.prototype.buffer
TypedArray
实例的buffer
属性,返回整段内存区域对应的ArrayBuffer
对象。该属性为只读属性。
const a = new Float32Array(64);
const b = new Uint8Array(a.buffer);
上面代码的a
视图对象和b
视图对象,对应同一个ArrayBuffer
对象,即同一段内存。
TypedArray.prototype.byteLength,TypedArray.prototype.byteOffset
byteLength
属性返回 TypedArray 数组占据的内存长度,单位为字节。byteOffset
属性返回 TypedArray 数组从底层ArrayBuffer
对象的哪个字节开始。这两个属性都是只读属性。
const b = new ArrayBuffer(8);
const v1 = new Int32Array(b);
const v2 = new Uint8Array(b, 2);
const v3 = new Int16Array(b, 2, 2);
v1.byteLength // 8
v2.byteLength // 6
v3.byteLength // 4
v1.byteOffset // 0
v2.byteOffset // 2
v3.byteOffset // 2
TypedArray.prototype.length
length
属性表示 TypedArray
数组含有多少个成员。注意将 length
属性和 byteLength
属性区分,前者是成员长度,后者是字节长度。
const a = new Int16Array(8);
a.length // 8
a.byteLength // 16
TypedArray.prototype.set()
TypedArray 数组的set
方法用于复制数组(普通数组或 TypedArray 数组),也就是将一段内容完全复制到另一段内存。
const a = new Uint8Array(8);
const b = new Uint8Array(8);
b.set(a);
上面代码复制a
数组的内容到b
数组,它是整段内存的复制,比一个个拷贝成员的那种复制快得多。
set
方法还可以接受第二个参数,表示从b
对象的哪一个成员开始复制a
对象。
const a = new Uint16Array(8);
const b = new Uint16Array(10);
b.set(a, 2)
上面代码的b
数组比a
数组多两个成员,所以从b[2]
开始复制。
TypedArray.prototype.subarray()
subarray
方法是对于 TypedArray 数组的一部分,再建立一个新的视图。
const a = new Uint16Array(8);
const b = a.subarray(2,3);
a.byteLength // 16
b.byteLength // 2
subarray
方法的第一个参数是起始的成员序号,第二个参数是结束的成员序号(不含该成员),如果省略则包含剩余的全部成员。所以,上面代码的a.subarray(2,3)
,意味着 b 只包含a[2]
一个成员,字节长度为 2。
TypedArray.prototype.slice()
TypeArray 实例的slice
方法,可以返回一个指定位置的新的TypedArray
实例。
let ui8 = Uint8Array.of(0, 1, 2);
ui8.slice(-1)
// Uint8Array [ 2 ]
上面代码中,ui8
是 8 位无符号整数数组视图的一个实例。它的slice
方法可以从当前视图之中,返回一个新的视图实例。
slice
方法的参数,表示原数组的具体位置,开始生成新数组。负值表示逆向的位置,即-1 为倒数第一个位置,-2 表示倒数第二个位置,以此类推。
TypedArray.of()
TypedArray 数组的所有构造函数,都有一个静态方法of
,用于将参数转为一个TypedArray
实例。
Float32Array.of(0.151, -8, 3.7)
// Float32Array [ 0.151, -8, 3.7 ]
下面三种方法都会生成同样一个 TypedArray 数组。
// 方法一
let tarr = new Uint8Array([1,2,3]);
// 方法二
let tarr = Uint8Array.of(1,2,3);
// 方法三
let tarr = new Uint8Array(3);
tarr[0] = 1;
tarr[1] = 2;
tarr[2] = 3;
TypedArray.from()
静态方法from
接受一个可遍历的数据结构(比如数组)作为参数,返回一个基于这个结构的TypedArray
实例。
Uint16Array.from([0, 1, 2])
// Uint16Array [ 0, 1, 2 ]
这个方法还可以将一种TypedArray
实例,转为另一种。
const ui16 = Uint16Array.from(Uint8Array.of(0, 1, 2));
ui16 instanceof Uint16Array // true
from
方法还可以接受一个函数,作为第二个参数,用来对每个元素进行遍历,功能类似map
方法。
Int8Array.of(127, 126, 125).map(x => 2 * x)
// Int8Array [ -2, -4, -6 ]
Int16Array.from(Int8Array.of(127, 126, 125), x => 2 * x)
// Int16Array [ 254, 252, 250 ]
上面的例子中,from
方法没有发生溢出,这说明遍历不是针对原来的 8 位整数数组。也就是说,from
会将第一个参数指定的 TypedArray 数组,拷贝到另一段内存之中,处理之后再将结果转成指定的数组格式。