6-5 Model Training Using TPU
It only requires six additional lines of code when training your model using TPU on Google Colab.
In Colab notebook, choose TPU in Edit -> Notebook Settings -> Hardware Accelerator.
Note: the following code only executes on Colab.
You may use the following link for testing (tf_TPU, in Chinese)
https://colab.research.google.com/drive/1XCIhATyE1R7lq6uwFlYlRsUr5d9_-r1s
%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import *
1. Data Preparation
MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
2. Model Defining
tf.keras.backend.clear_session()
def create_model():
model = models.Sequential()
model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Flatten())
model.add(layers.Dense(CAT_NUM,activation = "softmax"))
return(model)
def compile_model(model):
model.compile(optimizer=optimizers.Nadam(),
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)])
return(model)
3. Model Training
# The above mentioned 6 additional lines of code
import os
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='grpc://' + os.environ['COLAB_TPU_ADDR'])
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
strategy = tf.distribute.experimental.TPUStrategy(resolver)
with strategy.scope():
model = create_model()
model.summary()
model = compile_model(model)
WARNING:tensorflow:TPU system 10.26.134.242:8470 has already been initialized. Reinitializing the TPU can cause previously created variables on TPU to be lost.
WARNING:tensorflow:TPU system 10.26.134.242:8470 has already been initialized. Reinitializing the TPU can cause previously created variables on TPU to be lost.
INFO:tensorflow:Initializing the TPU system: 10.26.134.242:8470
INFO:tensorflow:Initializing the TPU system: 10.26.134.242:8470
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Clearing out eager caches
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Finished initializing TPU system.
INFO:tensorflow:Found TPU system:
INFO:tensorflow:Found TPU system:
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Cores: 8
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Workers: 1
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Num TPU Cores Per Worker: 8
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) (None, 300, 7) 216874
_________________________________________________________________
conv1d (Conv1D) (None, 296, 64) 2304
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 148, 64) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 146, 32) 6176
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 73, 32) 0
_________________________________________________________________
flatten (Flatten) (None, 2336) 0
_________________________________________________________________
dense (Dense) (None, 46) 107502
=================================================================
Total params: 332,856
Trainable params: 332,856
Non-trainable params: 0
_________________________________________________________________
history = model.fit(ds_train,validation_data = ds_test,epochs = 10)
Train for 281 steps, validate for 71 steps
Epoch 1/10
281/281 [==============================] - 12s 43ms/step - loss: 3.4466 - sparse_categorical_accuracy: 0.4332 - sparse_top_k_categorical_accuracy: 0.7180 - val_loss: 3.3179 - val_sparse_categorical_accuracy: 0.5352 - val_sparse_top_k_categorical_accuracy: 0.7195
Epoch 2/10
281/281 [==============================] - 6s 20ms/step - loss: 3.3251 - sparse_categorical_accuracy: 0.5405 - sparse_top_k_categorical_accuracy: 0.7302 - val_loss: 3.3082 - val_sparse_categorical_accuracy: 0.5463 - val_sparse_top_k_categorical_accuracy: 0.7235
Epoch 3/10
281/281 [==============================] - 6s 20ms/step - loss: 3.2961 - sparse_categorical_accuracy: 0.5729 - sparse_top_k_categorical_accuracy: 0.7280 - val_loss: 3.3026 - val_sparse_categorical_accuracy: 0.5499 - val_sparse_top_k_categorical_accuracy: 0.7217
Epoch 4/10
281/281 [==============================] - 5s 19ms/step - loss: 3.2751 - sparse_categorical_accuracy: 0.5924 - sparse_top_k_categorical_accuracy: 0.7276 - val_loss: 3.2957 - val_sparse_categorical_accuracy: 0.5543 - val_sparse_top_k_categorical_accuracy: 0.7217
Epoch 5/10
281/281 [==============================] - 5s 19ms/step - loss: 3.2655 - sparse_categorical_accuracy: 0.6008 - sparse_top_k_categorical_accuracy: 0.7290 - val_loss: 3.3022 - val_sparse_categorical_accuracy: 0.5490 - val_sparse_top_k_categorical_accuracy: 0.7231
Epoch 6/10
281/281 [==============================] - 5s 19ms/step - loss: 3.2616 - sparse_categorical_accuracy: 0.6041 - sparse_top_k_categorical_accuracy: 0.7295 - val_loss: 3.3015 - val_sparse_categorical_accuracy: 0.5503 - val_sparse_top_k_categorical_accuracy: 0.7235
Epoch 7/10
281/281 [==============================] - 6s 21ms/step - loss: 3.2595 - sparse_categorical_accuracy: 0.6059 - sparse_top_k_categorical_accuracy: 0.7322 - val_loss: 3.3064 - val_sparse_categorical_accuracy: 0.5454 - val_sparse_top_k_categorical_accuracy: 0.7266
Epoch 8/10
281/281 [==============================] - 6s 21ms/step - loss: 3.2591 - sparse_categorical_accuracy: 0.6063 - sparse_top_k_categorical_accuracy: 0.7327 - val_loss: 3.3025 - val_sparse_categorical_accuracy: 0.5481 - val_sparse_top_k_categorical_accuracy: 0.7231
Epoch 9/10
281/281 [==============================] - 5s 19ms/step - loss: 3.2588 - sparse_categorical_accuracy: 0.6062 - sparse_top_k_categorical_accuracy: 0.7332 - val_loss: 3.2992 - val_sparse_categorical_accuracy: 0.5521 - val_sparse_top_k_categorical_accuracy: 0.7257
Epoch 10/10
281/281 [==============================] - 5s 18ms/step - loss: 3.2577 - sparse_categorical_accuracy: 0.6073 - sparse_top_k_categorical_accuracy: 0.7363 - val_loss: 3.2981 - val_sparse_categorical_accuracy: 0.5516 - val_sparse_top_k_categorical_accuracy: 0.7306
CPU times: user 18.9 s, sys: 3.86 s, total: 22.7 s
Wall time: 1min 1s
Please leave comments in the WeChat official account “Python与算法之美” (Elegance of Python and Algorithms) if you want to communicate with the author about the content. The author will try best to reply given the limited time available.
You are also welcomed to join the group chat with the other readers through replying 加群 (join group) in the WeChat official account.