6-4 Model Training Using Multiple GPUs
We recommend using pre-defined fit
method for training when using multiple GPU, which only requires two additional lines of code.
In Colab notebook, choose GPU in Edit -> Notebook Settings -> Hardware Accelerator
Note: the following code only executes on Colab.
You may use the following link for testing (tf_multiGPU, in Chinese)
https://colab.research.google.com/drive/1j2kp_t0S_cofExSN7IyJ4QtMscbVlXU-
Introduction to MirroredStrategy:
- The strategy gives a copy to each of the N computing devices before training.
- When a batch of training data is received, devide the data into N portions and transfer them into N devices (data parallelism)
- Each device calculate the local variables (mirrored variables) to calculate the gradient according to the received portion of data.
- Implement All-reduce operation in parallel computing, exchange the gradient data and calculate summation, allows each device to obtain the gradient sum from all the devices.
- Update the local variables (mirrored variables) using the gradient sum.
- Proceed to the next round of training when all the devices updated their local variables (This is a fully synchronized strategy).
%tensorflow_version 2.x
import tensorflow as tf
print(tf.__version__)
from tensorflow.keras import *
# Simulate two logical GPUs with one physical GPU
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Set two logical GPUs for simulation
try:
tf.config.experimental.set_virtual_device_configuration(gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024),
tf.config.experimental.VirtualDeviceConfiguration(memory_limit=1024)])
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPU,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
print(e)
1. Data Preparation
MAX_LEN = 300
BATCH_SIZE = 32
(x_train,y_train),(x_test,y_test) = datasets.reuters.load_data()
x_train = preprocessing.sequence.pad_sequences(x_train,maxlen=MAX_LEN)
x_test = preprocessing.sequence.pad_sequences(x_test,maxlen=MAX_LEN)
MAX_WORDS = x_train.max()+1
CAT_NUM = y_train.max()+1
ds_train = tf.data.Dataset.from_tensor_slices((x_train,y_train)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
ds_test = tf.data.Dataset.from_tensor_slices((x_test,y_test)) \
.shuffle(buffer_size = 1000).batch(BATCH_SIZE) \
.prefetch(tf.data.experimental.AUTOTUNE).cache()
2. Model Defining
tf.keras.backend.clear_session()
def create_model():
model = models.Sequential()
model.add(layers.Embedding(MAX_WORDS,7,input_length=MAX_LEN))
model.add(layers.Conv1D(filters = 64,kernel_size = 5,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Conv1D(filters = 32,kernel_size = 3,activation = "relu"))
model.add(layers.MaxPool1D(2))
model.add(layers.Flatten())
model.add(layers.Dense(CAT_NUM,activation = "softmax"))
return(model)
def compile_model(model):
model.compile(optimizer=optimizers.Nadam(),
loss=losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[metrics.SparseCategoricalAccuracy(),metrics.SparseTopKCategoricalAccuracy(5)])
return(model)
3. Model Training
# Add the following two lines of code
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
model = create_model()
model.summary()
model = compile_model(model)
history = model.fit(ds_train,validation_data = ds_test,epochs = 10)
WARNING:tensorflow:NCCL is not supported when using virtual GPUs, fallingback to reduction to one device
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1')
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) (None, 300, 7) 216874
_________________________________________________________________
conv1d (Conv1D) (None, 296, 64) 2304
_________________________________________________________________
max_pooling1d (MaxPooling1D) (None, 148, 64) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None, 146, 32) 6176
_________________________________________________________________
max_pooling1d_1 (MaxPooling1 (None, 73, 32) 0
_________________________________________________________________
flatten (Flatten) (None, 2336) 0
_________________________________________________________________
dense (Dense) (None, 46) 107502
=================================================================
Total params: 332,856
Trainable params: 332,856
Non-trainable params: 0
_________________________________________________________________
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
Train for 281 steps, validate for 71 steps
Epoch 1/10
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',).
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:GPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1').
281/281 [==============================] - 15s 53ms/step - loss: 2.0270 - sparse_categorical_accuracy: 0.4653 - sparse_top_k_categorical_accuracy: 0.7481 - val_loss: 1.7517 - val_sparse_categorical_accuracy: 0.5481 - val_sparse_top_k_categorical_accuracy: 0.7578
Epoch 2/10
281/281 [==============================] - 4s 14ms/step - loss: 1.5206 - sparse_categorical_accuracy: 0.6045 - sparse_top_k_categorical_accuracy: 0.7938 - val_loss: 1.5715 - val_sparse_categorical_accuracy: 0.5993 - val_sparse_top_k_categorical_accuracy: 0.7983
Epoch 3/10
281/281 [==============================] - 4s 14ms/step - loss: 1.2178 - sparse_categorical_accuracy: 0.6843 - sparse_top_k_categorical_accuracy: 0.8547 - val_loss: 1.5232 - val_sparse_categorical_accuracy: 0.6327 - val_sparse_top_k_categorical_accuracy: 0.8112
Epoch 4/10
281/281 [==============================] - 4s 13ms/step - loss: 0.9127 - sparse_categorical_accuracy: 0.7648 - sparse_top_k_categorical_accuracy: 0.9113 - val_loss: 1.6527 - val_sparse_categorical_accuracy: 0.6296 - val_sparse_top_k_categorical_accuracy: 0.8201
Epoch 5/10
281/281 [==============================] - 4s 14ms/step - loss: 0.6606 - sparse_categorical_accuracy: 0.8321 - sparse_top_k_categorical_accuracy: 0.9525 - val_loss: 1.8791 - val_sparse_categorical_accuracy: 0.6158 - val_sparse_top_k_categorical_accuracy: 0.8219
Epoch 6/10
281/281 [==============================] - 4s 14ms/step - loss: 0.4919 - sparse_categorical_accuracy: 0.8799 - sparse_top_k_categorical_accuracy: 0.9725 - val_loss: 2.1282 - val_sparse_categorical_accuracy: 0.6037 - val_sparse_top_k_categorical_accuracy: 0.8112
Epoch 7/10
281/281 [==============================] - 4s 14ms/step - loss: 0.3947 - sparse_categorical_accuracy: 0.9051 - sparse_top_k_categorical_accuracy: 0.9814 - val_loss: 2.3033 - val_sparse_categorical_accuracy: 0.6046 - val_sparse_top_k_categorical_accuracy: 0.8094
Epoch 8/10
281/281 [==============================] - 4s 14ms/step - loss: 0.3335 - sparse_categorical_accuracy: 0.9207 - sparse_top_k_categorical_accuracy: 0.9863 - val_loss: 2.4255 - val_sparse_categorical_accuracy: 0.5993 - val_sparse_top_k_categorical_accuracy: 0.8099
Epoch 9/10
281/281 [==============================] - 4s 14ms/step - loss: 0.2919 - sparse_categorical_accuracy: 0.9304 - sparse_top_k_categorical_accuracy: 0.9911 - val_loss: 2.5571 - val_sparse_categorical_accuracy: 0.6020 - val_sparse_top_k_categorical_accuracy: 0.8126
Epoch 10/10
281/281 [==============================] - 4s 14ms/step - loss: 0.2617 - sparse_categorical_accuracy: 0.9342 - sparse_top_k_categorical_accuracy: 0.9937 - val_loss: 2.6700 - val_sparse_categorical_accuracy: 0.6077 - val_sparse_top_k_categorical_accuracy: 0.8148
CPU times: user 1min 2s, sys: 8.59 s, total: 1min 10s
Wall time: 58.5 s
Please leave comments in the WeChat official account “Python与算法之美” (Elegance of Python and Algorithms) if you want to communicate with the author about the content. The author will try best to reply given the limited time available.
You are also welcomed to join the group chat with the other readers through replying 加群 (join group) in the WeChat official account.