Java API
We do not recommend using the Paimon API naked, unless you are a professional downstream ecosystem developer, and even if you do, there will be significant difficulties.
If you are only using Paimon, we strongly recommend using computing engines such as Flink SQL or Spark SQL.
The following documents are not detailed and are for reference only.
Dependency
Maven dependency:
<dependency>
<groupId>org.apache.paimon</groupId>
<artifactId>paimon-bundle</artifactId>
<version>0.9.0</version>
</dependency>
Or download the jar file: Paimon Bundle.
Paimon relies on Hadoop environment, you should add hadoop classpath or bundled jar.
Create Catalog
Before coming into contact with the Table, you need to create a Catalog.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.CatalogContext;
import org.apache.paimon.catalog.CatalogFactory;
import org.apache.paimon.fs.Path;
import org.apache.paimon.options.Options;
public class CreateCatalog {
public static Catalog createFilesystemCatalog() {
CatalogContext context = CatalogContext.create(new Path("..."));
return CatalogFactory.createCatalog(context);
}
public static Catalog createHiveCatalog() {
// Paimon Hive catalog relies on Hive jars
// You should add hive classpath or hive bundled jar.
Options options = new Options();
options.set("warehouse", "...");
options.set("metastore", "hive");
options.set("uri", "...");
options.set("hive-conf-dir", "...");
options.set("hadoop-conf-dir", "...");
CatalogContext context = CatalogContext.create(options);
return CatalogFactory.createCatalog(context);
}
}
Create Table
You can use the catalog to create tables. The created tables are persistence in the file system. Next time you can directly obtain these tables.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.schema.Schema;
import org.apache.paimon.types.DataTypes;
public class CreateTable {
public static void main(String[] args) {
Schema.Builder schemaBuilder = Schema.newBuilder();
schemaBuilder.primaryKey("f0", "f1");
schemaBuilder.partitionKeys("f1");
schemaBuilder.column("f0", DataTypes.STRING());
schemaBuilder.column("f1", DataTypes.INT());
Schema schema = schemaBuilder.build();
Identifier identifier = Identifier.create("my_db", "my_table");
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.createTable(identifier, schema, false);
} catch (Catalog.TableAlreadyExistException e) {
// do something
} catch (Catalog.DatabaseNotExistException e) {
// do something
}
}
}
Get Table
The Table
interface provides access to the table metadata and tools to read and write table.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.table.Table;
public class GetTable {
public static Table getTable() {
Identifier identifier = Identifier.create("my_db", "my_table");
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
return catalog.getTable(identifier);
} catch (Catalog.TableNotExistException e) {
// do something
throw new RuntimeException("table not exist");
}
}
}
Batch Read
For relatively small amounts of data, or for data that has undergone projection and filtering, you can directly use a standalone program to read the table data.
But if the data volume of the table is relatively large, you can distribute splits to different tasks for reading.
The reading is divided into two stages:
- Scan Plan: Generate plan splits in a global node (‘Coordinator’, or named ‘Driver’).
- Read Split: Read split in distributed tasks.
import org.apache.paimon.data.InternalRow;
import org.apache.paimon.predicate.Predicate;
import org.apache.paimon.predicate.PredicateBuilder;
import org.apache.paimon.reader.RecordReader;
import org.apache.paimon.table.Table;
import org.apache.paimon.table.source.ReadBuilder;
import org.apache.paimon.table.source.Split;
import org.apache.paimon.table.source.TableRead;
import org.apache.paimon.types.DataTypes;
import org.apache.paimon.types.RowType;
import com.google.common.collect.Lists;
import java.util.List;
public class ReadTable {
public static void main(String[] args) throws Exception {
// 1. Create a ReadBuilder and push filter (`withFilter`)
// and projection (`withProjection`) if necessary
Table table = GetTable.getTable();
PredicateBuilder builder =
new PredicateBuilder(RowType.of(DataTypes.STRING(), DataTypes.INT()));
Predicate notNull = builder.isNotNull(0);
Predicate greaterOrEqual = builder.greaterOrEqual(1, 12);
int[] projection = new int[] {0, 1};
ReadBuilder readBuilder =
table.newReadBuilder()
.withProjection(projection)
.withFilter(Lists.newArrayList(notNull, greaterOrEqual));
// 2. Plan splits in 'Coordinator' (or named 'Driver')
List<Split> splits = readBuilder.newScan().plan().splits();
// 3. Distribute these splits to different tasks
// 4. Read a split in task
TableRead read = readBuilder.newRead();
RecordReader<InternalRow> reader = read.createReader(splits);
reader.forEachRemaining(System.out::println);
}
}
Batch Write
The writing is divided into two stages:
- Write records: Write records in distributed tasks, generate commit messages.
- Commit/Abort: Collect all CommitMessages, commit them in a global node (‘Coordinator’, or named ‘Driver’, or named ‘Committer’). When the commit fails for certain reason, abort unsuccessful commit via CommitMessages.
import org.apache.paimon.data.BinaryString;
import org.apache.paimon.data.GenericRow;
import org.apache.paimon.table.Table;
import org.apache.paimon.table.sink.BatchTableCommit;
import org.apache.paimon.table.sink.BatchTableWrite;
import org.apache.paimon.table.sink.BatchWriteBuilder;
import org.apache.paimon.table.sink.CommitMessage;
import java.util.List;
public class BatchWrite {
public static void main(String[] args) throws Exception {
// 1. Create a WriteBuilder (Serializable)
Table table = GetTable.getTable();
BatchWriteBuilder writeBuilder = table.newBatchWriteBuilder().withOverwrite();
// 2. Write records in distributed tasks
BatchTableWrite write = writeBuilder.newWrite();
GenericRow record1 = GenericRow.of(BinaryString.fromString("Alice"), 12);
GenericRow record2 = GenericRow.of(BinaryString.fromString("Bob"), 5);
GenericRow record3 = GenericRow.of(BinaryString.fromString("Emily"), 18);
// If this is a distributed write, you can use writeBuilder.newWriteSelector.
// WriteSelector determines to which logical downstream writers a record should be written to.
// If it returns empty, no data distribution is required.
write.write(record1);
write.write(record2);
write.write(record3);
List<CommitMessage> messages = write.prepareCommit();
// 3. Collect all CommitMessages to a global node and commit
BatchTableCommit commit = writeBuilder.newCommit();
commit.commit(messages);
// Abort unsuccessful commit to delete data files
// commit.abort(messages);
}
}
Stream Read
The difference of Stream Read is that StreamTableScan can continuously scan and generate splits.
StreamTableScan provides the ability to checkpoint and restore, which can let you save the correct state during stream reading.
import org.apache.paimon.data.InternalRow;
import org.apache.paimon.predicate.Predicate;
import org.apache.paimon.predicate.PredicateBuilder;
import org.apache.paimon.reader.RecordReader;
import org.apache.paimon.table.Table;
import org.apache.paimon.table.source.ReadBuilder;
import org.apache.paimon.table.source.Split;
import org.apache.paimon.table.source.StreamTableScan;
import org.apache.paimon.table.source.TableRead;
import org.apache.paimon.types.DataTypes;
import org.apache.paimon.types.RowType;
import com.google.common.collect.Lists;
import java.util.List;
public class StreamReadTable {
public static void main(String[] args) throws Exception {
// 1. Create a ReadBuilder and push filter (`withFilter`)
// and projection (`withProjection`) if necessary
Table table = GetTable.getTable();
PredicateBuilder builder =
new PredicateBuilder(RowType.of(DataTypes.STRING(), DataTypes.INT()));
Predicate notNull = builder.isNotNull(0);
Predicate greaterOrEqual = builder.greaterOrEqual(1, 12);
int[] projection = new int[] {0, 1};
ReadBuilder readBuilder =
table.newReadBuilder()
.withProjection(projection)
.withFilter(Lists.newArrayList(notNull, greaterOrEqual));
// 2. Plan splits in 'Coordinator' (or named 'Driver')
StreamTableScan scan = readBuilder.newStreamScan();
while (true) {
List<Split> splits = scan.plan().splits();
// Distribute these splits to different tasks
Long state = scan.checkpoint();
// can be restored in scan.restore(state) after fail over
// 3. Read a split in task
TableRead read = readBuilder.newRead();
RecordReader<InternalRow> reader = read.createReader(splits);
reader.forEachRemaining(System.out::println);
Thread.sleep(1000);
}
}
}
Stream Write
The difference of Stream Write is that StreamTableCommit can continuously commit.
Key points to achieve exactly-once consistency:
- CommitUser represents a user. A user can commit multiple times. In distributed processing, you are expected to use the same commitUser.
- Different applications need to use different commitUsers.
- The commitIdentifier of
StreamTableWrite
andStreamTableCommit
needs to be consistent, and the id needs to be incremented for the next committing. - When a failure occurs, if you still have uncommitted
CommitMessage
s, please useStreamTableCommit#filterAndCommit
to exclude the committed messages by commitIdentifier.
import org.apache.paimon.data.BinaryString;
import org.apache.paimon.data.GenericRow;
import org.apache.paimon.table.Table;
import org.apache.paimon.table.sink.CommitMessage;
import org.apache.paimon.table.sink.StreamTableCommit;
import org.apache.paimon.table.sink.StreamTableWrite;
import org.apache.paimon.table.sink.StreamWriteBuilder;
import java.util.List;
public class StreamWriteTable {
public static void main(String[] args) throws Exception {
// 1. Create a WriteBuilder (Serializable)
Table table = GetTable.getTable();
StreamWriteBuilder writeBuilder = table.newStreamWriteBuilder();
// 2. Write records in distributed tasks
StreamTableWrite write = writeBuilder.newWrite();
// commitIdentifier like Flink checkpointId
long commitIdentifier = 0;
while (true) {
GenericRow record1 = GenericRow.of(BinaryString.fromString("Alice"), 12);
GenericRow record2 = GenericRow.of(BinaryString.fromString("Bob"), 5);
GenericRow record3 = GenericRow.of(BinaryString.fromString("Emily"), 18);
// If this is a distributed write, you can use writeBuilder.newWriteSelector.
// WriteSelector determines to which logical downstream writers a record should be written to.
// If it returns empty, no data distribution is required.
write.write(record1);
write.write(record2);
write.write(record3);
List<CommitMessage> messages = write.prepareCommit(false, commitIdentifier);
commitIdentifier++;
// 3. Collect all CommitMessages to a global node and commit
StreamTableCommit commit = writeBuilder.newCommit();
commit.commit(commitIdentifier, messages);
// 4. When failure occurs and you're not sure if the commit process is successful,
// you can use `filterAndCommit` to retry the commit process.
// Succeeded commits will be automatically skipped.
/*
Map<Long, List<CommitMessage>> commitIdentifiersAndMessages = new HashMap<>();
commitIdentifiersAndMessages.put(commitIdentifier, messages);
commit.filterAndCommit(commitIdentifiersAndMessages);
*/
Thread.sleep(1000);
}
}
}
Data Types
Java | Paimon |
---|---|
boolean | boolean |
byte | byte |
short | short |
int | int |
long | long |
float | float |
double | double |
string | org.apache.paimon.data.BinaryString |
decimal | org.apache.paimon.data.Decimal |
timestamp | org.apache.paimon.data.Timestamp |
byte[] | byte[] |
array | org.apache.paimon.data.InternalArray |
map | org.apache.paimon.data.InternalMap |
InternalRow | org.apache.paimon.data.InternalRow |
Predicate Types
SQL Predicate | Paimon Predicate |
---|---|
and | org.apache.paimon.predicate.PredicateBuilder.And |
or | org.apache.paimon.predicate.PredicateBuilder.Or |
is null | org.apache.paimon.predicate.PredicateBuilder.IsNull |
is not null | org.apache.paimon.predicate.PredicateBuilder.IsNotNull |
in | org.apache.paimon.predicate.PredicateBuilder.In |
not in | org.apache.paimon.predicate.PredicateBuilder.NotIn |
= | org.apache.paimon.predicate.PredicateBuilder.Equal |
<> | org.apache.paimon.predicate.PredicateBuilder.NotEqual |
< | org.apache.paimon.predicate.PredicateBuilder.LessThan |
<= | org.apache.paimon.predicate.PredicateBuilder.LessOrEqual |
> | org.apache.paimon.predicate.PredicateBuilder.GreaterThan |
>= | org.apache.paimon.predicate.PredicateBuilder.GreaterOrEqual |
Create Database
You can use the catalog to create databases. The created databases are persistence in the file system.
import org.apache.paimon.catalog.Catalog;
public class CreateDatabase {
public static void main(String[] args) {
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.createDatabase("my_db", false);
} catch (Catalog.DatabaseAlreadyExistException e) {
// do something
}
}
}
Determine Whether Database Exists
You can use the catalog to determine whether the database exists
import org.apache.paimon.catalog.Catalog;
public class DatabaseExists {
public static void main(String[] args) {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
boolean exists = catalog.databaseExists("my_db");
}
}
List Databases
You can use the catalog to list databases.
import org.apache.paimon.catalog.Catalog;
import java.util.List;
public class ListDatabases {
public static void main(String[] args) {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
List<String> databases = catalog.listDatabases();
}
}
Drop Database
You can use the catalog to drop databases.
import org.apache.paimon.catalog.Catalog;
public class DropDatabase {
public static void main(String[] args) {
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.dropDatabase("my_db", false, true);
} catch (Catalog.DatabaseNotEmptyException e) {
// do something
} catch (Catalog.DatabaseNotExistException e) {
// do something
}
}
}
Determine Whether Table Exists
You can use the catalog to determine whether the table exists
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
public class TableExists {
public static void main(String[] args) {
Identifier identifier = Identifier.create("my_db", "my_table");
Catalog catalog = CreateCatalog.createFilesystemCatalog();
boolean exists = catalog.tableExists(identifier);
}
}
List Tables
You can use the catalog to list tables.
import org.apache.paimon.catalog.Catalog;
import java.util.List;
public class ListTables {
public static void main(String[] args) {
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
List<String> tables = catalog.listTables("my_db");
} catch (Catalog.DatabaseNotExistException e) {
// do something
}
}
}
Drop Table
You can use the catalog to drop table.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
public class DropTable {
public static void main(String[] args) {
Identifier identifier = Identifier.create("my_db", "my_table");
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.dropTable(identifier, false);
} catch (Catalog.TableNotExistException e) {
// do something
}
}
}
Rename Table
You can use the catalog to rename a table.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
public class RenameTable {
public static void main(String[] args) {
Identifier fromTableIdentifier = Identifier.create("my_db", "my_table");
Identifier toTableIdentifier = Identifier.create("my_db", "test_table");
try {
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.renameTable(fromTableIdentifier, toTableIdentifier, false);
} catch (Catalog.TableAlreadyExistException e) {
// do something
} catch (Catalog.TableNotExistException e) {
// do something
}
}
}
Alter Table
You can use the catalog to alter a table, but you need to pay attention to the following points.
- Column %s cannot specify NOT NULL in the %s table.
- Cannot update partition column type in the table.
- Cannot change nullability of primary key.
- If the type of the column is nested row type, update the column type is not supported.
- Update column to nested row type is not supported.
import org.apache.paimon.catalog.Catalog;
import org.apache.paimon.catalog.Identifier;
import org.apache.paimon.schema.Schema;
import org.apache.paimon.schema.SchemaChange;
import org.apache.paimon.types.DataField;
import org.apache.paimon.types.DataTypes;
import com.google.common.collect.Lists;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
public class AlterTable {
public static void main(String[] args) {
Identifier identifier = Identifier.create("my_db", "my_table");
Map<String, String> options = new HashMap<>();
options.put("bucket", "4");
options.put("compaction.max.file-num", "40");
Catalog catalog = CreateCatalog.createFilesystemCatalog();
catalog.createDatabase("my_db", false);
try {
catalog.createTable(
identifier,
new Schema(
Lists.newArrayList(
new DataField(0, "col1", DataTypes.STRING(), "field1"),
new DataField(1, "col2", DataTypes.STRING(), "field2"),
new DataField(2, "col3", DataTypes.STRING(), "field3"),
new DataField(3, "col4", DataTypes.BIGINT(), "field4"),
new DataField(
4,
"col5",
DataTypes.ROW(
new DataField(
5, "f1", DataTypes.STRING(), "f1"),
new DataField(
6, "f2", DataTypes.STRING(), "f2"),
new DataField(
7, "f3", DataTypes.STRING(), "f3")),
"field5"),
new DataField(8, "col6", DataTypes.STRING(), "field6")),
Lists.newArrayList("col1"), // partition keys
Lists.newArrayList("col1", "col2"), // primary key
options,
"table comment"),
false);
} catch (Catalog.TableAlreadyExistException e) {
// do something
} catch (Catalog.DatabaseNotExistException e) {
// do something
}
// add option
SchemaChange addOption = SchemaChange.setOption("snapshot.time-retained", "2h");
// remove option
SchemaChange removeOption = SchemaChange.removeOption("compaction.max.file-num");
// add column
SchemaChange addColumn = SchemaChange.addColumn("col1_after", DataTypes.STRING());
// add a column after col1
SchemaChange.Move after = SchemaChange.Move.after("col1_after", "col1");
SchemaChange addColumnAfterField =
SchemaChange.addColumn("col7", DataTypes.STRING(), "", after);
// rename column
SchemaChange renameColumn = SchemaChange.renameColumn("col3", "col3_new_name");
// drop column
SchemaChange dropColumn = SchemaChange.dropColumn("col6");
// update column comment
SchemaChange updateColumnComment =
SchemaChange.updateColumnComment(new String[] {"col4"}, "col4 field");
// update nested column comment
SchemaChange updateNestedColumnComment =
SchemaChange.updateColumnComment(new String[] {"col5", "f1"}, "col5 f1 field");
// update column type
SchemaChange updateColumnType = SchemaChange.updateColumnType("col4", DataTypes.DOUBLE());
// update column position, you need to pass in a parameter of type Move
SchemaChange updateColumnPosition =
SchemaChange.updateColumnPosition(SchemaChange.Move.first("col4"));
// update column nullability
SchemaChange updateColumnNullability =
SchemaChange.updateColumnNullability(new String[] {"col4"}, false);
// update nested column nullability
SchemaChange updateNestedColumnNullability =
SchemaChange.updateColumnNullability(new String[] {"col5", "f2"}, false);
SchemaChange[] schemaChanges =
new SchemaChange[] {
addOption,
removeOption,
addColumn,
addColumnAfterField,
renameColumn,
dropColumn,
updateColumnComment,
updateNestedColumnComment,
updateColumnType,
updateColumnPosition,
updateColumnNullability,
updateNestedColumnNullability
};
try {
catalog.alterTable(identifier, Arrays.asList(schemaChanges), false);
} catch (Catalog.TableNotExistException e) {
// do something
} catch (Catalog.ColumnAlreadyExistException e) {
// do something
} catch (Catalog.ColumnNotExistException e) {
// do something
}
}
}
Table metadata:
name
return a name string to identify this table.rowType
return the current row type of this table containing a sequence of table’s fields.partitionKeys
returns the partition keys of this table.parimaryKeys
returns the primary keys of this table.options
returns the configuration of this table in a map of key-value.comment
returns the optional comment of this table.copy
return a new table by applying dynamic options to this table.