1.1 题目

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

For example: A = [2,3,1,1,4], return true.

A = [3,2,1,0,4], return false.

给出一个非负整数数组,你最初定位在数组的第一个位置。   

数组中的每个元素代表你在那个位置可以跳跃的最大长度。    

判断你是否能到达数组的最后一个位置。

1.2 解题思路

注意题目中A[i]表示的是在位置i,“最大”的跳跃距离,而并不是指在位置i只能跳A[i]的距离。所以当跳到位置i后,能达到的最大的距离至少是i+A[i]。用greedy来解,记录一个当前能达到的最远距离maxIndex:

  1. 能跳到位置i的条件:i<=maxIndex。
  2. 一旦跳到i,则maxIndex = max(maxIndex, i+A[i])。
  3. 能跳到最后一个位置n-1的条件是:maxIndex >= n-1

1.3 解题代码

  1. public class Solution {
  2. public boolean canJump(int[] A) {
  3. // think it as merging n intervals
  4. if (A == null || A.length == 0) {
  5. return false;
  6. }
  7. int farthest = A[0];
  8. for (int i = 1; i < A.length; i++) {
  9. if (i <= farthest && A[i] + i >= farthest) {
  10. farthest = A[i] + i;
  11. }
  12. }
  13. return farthest >= A.length - 1;
  14. }
  15. }

2.1 题目

Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example: Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)

给出一个非负整数数组,你最初定位在数组的第一个位置。

数组中的每个元素代表你在那个位置可以跳跃的最大长度。   

你的目标是使用最少的跳跃次数到达数组的最后一个位置。

2.2 解题思路

同样可以用greedy解决。与I不同的是,求的不是对每个i,从A[0:i]能跳到的最远距离;而是计算跳了k次后能达到的最远距离,这里的通项公式为:

d[k] = max(i+A[i]) d[k-2] < i <= d[k-1]

2.3 解题代码

  1. public class Solution {
  2. public int jump(int[] A) {
  3. if (A == null || A.length == 0) {
  4. return -1;
  5. }
  6. int start = 0, end = 0, jumps = 0;
  7. while (end < A.length - 1) {
  8. jumps++;
  9. int farthest = end;
  10. for (int i = start; i <= end; i++) {
  11. if (A[i] + i > farthest) {
  12. farthest = A[i] + i;
  13. }
  14. }
  15. start = end + 1;
  16. end = farthest;
  17. }
  18. return jumps;
  19. }
  20. }