背景

PostgreSQL 与Oracle dedicate server 一样采用了线程模式,在连接数非常多时,性能下降会比较严重。

通常社区用户的做法是使用连接池,比如pgbouncer,但是使用PGbouncer也会引入一些使用上的不便利,比如transaction模式不能使用绑定变量等。在以下文章中做过一些较为详细的分析。

《阿里云 RDS PostgreSQL 高并发特性 vs 社区版本 (1.6万并发: 3倍吞吐,240倍响应速度)》

Postgrespro是俄罗斯的一家PG生态公司,

《透过postgrespro看PostgreSQL的附加功能》

内置连接池在他们的TODO列表有看到,最近放出了一版devel版本。

postgres buildin pool 版本安装

1、下载源码,切换分支

  1. git clone https://github.com/postgrespro/postgresql.builtin_pool
  2. cd postgresql.builtin_pool
  3. git checkout conn_pool
  4. git branch conn_pool

2、编译安装

  1. ./configure --prefix=/home/digoal/pgsql11_pool
  2. make -j 128
  3. make install

3、修改环境变量

  1. vi env_pg11_pool.sh
  2. export PS1="$USER@`/bin/hostname -s`-> "
  3. export PGPORT=4001
  4. export PGDATA=/data01/pg/pg_root$PGPORT
  5. export LANG=en_US.utf8
  6. export PGHOME=/home/digoal/pgsql11_pool
  7. export LD_LIBRARY_PATH=$PGHOME/lib:/lib64:/usr/lib64:/usr/local/lib64:/lib:/usr/lib:/usr/local/lib:$LD_LIBRARY_PATH
  8. export DATE=`date +"%Y%m%d%H%M"`
  9. export PATH=$PGHOME/bin:$PATH:.
  10. export MANPATH=$PGHOME/share/man:$MANPATH
  11. export PGHOST=$PGDATA
  12. export PGUSER=postgres
  13. export PGDATABASE=postgres
  14. alias rm='rm -i'
  15. alias ll='ls -lh'
  16. unalias vi

4、设置环境变量

  1. . ./env_pg11_pool.sh

5、初始化数据库

  1. initdb -D $PGDATA -U postgres -E UTF8 --locale=en_US.utf8 -X /data02/pg/pg_wal_4001

6、配置数据库参数

  1. cd $PGDATA
  2. vi postgresql.conf
  3. listen_addresses = '0.0.0.0'
  4. port = 4001
  5. max_connections = 20000
  6. superuser_reserved_connections = 13
  7. unix_socket_directories = '/tmp,.'
  8. tcp_keepalives_idle = 60
  9. tcp_keepalives_interval = 10
  10. tcp_keepalives_count = 10
  11. shared_buffers = 32GB
  12. maintenance_work_mem = 1GB
  13. dynamic_shared_memory_type = posix
  14. vacuum_cost_delay = 0
  15. bgwriter_delay = 10ms
  16. bgwriter_lru_maxpages = 500
  17. bgwriter_lru_multiplier = 5.0
  18. effective_io_concurrency = 0
  19. wal_level = minimal
  20. synchronous_commit = off
  21. full_page_writes = off
  22. wal_buffers = 128MB
  23. wal_writer_delay = 10ms
  24. checkpoint_timeout = 25min
  25. max_wal_size = 64GB
  26. min_wal_size = 16GB
  27. checkpoint_completion_target = 0.1
  28. max_wal_senders = 0
  29. random_page_cost = 1.1
  30. log_destination = 'csvlog'
  31. logging_collector = on
  32. log_truncate_on_rotation = on
  33. log_checkpoints = on
  34. log_error_verbosity = verbose
  35. log_timezone = 'PRC'
  36. datestyle = 'iso, mdy'
  37. timezone = 'PRC'
  38. lc_messages = 'C'
  39. lc_monetary = 'C'
  40. lc_numeric = 'C'
  41. lc_time = 'C'
  42. default_text_search_config = 'pg_catalog.english'

内置连接池参数如下

  1. # pool 配置
  2. session_pool_size=56 # 最好与CPU核数一致 ,如果有很多pool ports,可以考虑设小一点。
  3. session_pool_ports=0 # 如果配置为0,表示shared server与dedicate server共用一个端口, port = 4001
  4. # 如果配置为1,表示port = 4001为deadcate server port,port+1 为shared server ports.
  5. # 如果配置为大于1,port+1, port+2, .... 为shared server ports.
  6. # 如果要对应用透明,建议配置为0, 但是最佳实践建议配置为大于1,比如每对user/dbname 一个port。
  7. # postgres数据库不受pool限制,一律使用dedicate server.

架构

pic

pic

7、启动数据库

  1. pg_ctl start

连接池参数介绍

1、pool包含两个参数

  1. # pool 配置
  2. session_pool_size=56 # 最好与CPU核数一致 ,如果有很多pool ports,可以考虑设小一点。
  3. session_pool_ports=0 # 如果配置为0,表示shared server与dedicate server共用一个端口, port = 4001
  4. # 如果配置为1,表示port = 4001为deadcate server port,port+1 为shared server ports.
  5. # 如果配置为大于1,port+1, port+2, .... 为shared server ports.
  6. # 如果要对应用透明,建议配置为0, 但是最佳实践建议配置为大于1,比如每对user/dbname 一个port。
  7. # postgres数据库不受pool限制,一律使用dedicate server.

在guc.c里面可以看到这两个参数的介绍

  1. {
  2. {"session_pool_size", PGC_POSTMASTER, CONN_AUTH_SETTINGS,
  3. gettext_noop("Sets number of backends serving client sessions."),
  4. gettext_noop("If non-zero then session pooling will be used: "
  5. "client connections will be redirected to one of the backends and maximal number of backends is determined by this parameter."
  6. "Launched backend are never terminated even in case of no active sessions.")
  7. },
  8. &SessionPoolSize,
  9. 10, 0, INT_MAX,
  10. NULL, NULL, NULL
  11. },
  12. {
  13. {"session_pool_ports", PGC_POSTMASTER, CONN_AUTH_SETTINGS,
  14. gettext_noop("Number of session ports = number of session pools."),
  15. gettext_noop("Number of extra ports which PostgreSQL will listen to accept client session. Each such port has separate session pool."
  16. "It is intended that each port corresponds to some particular database/user combination, so that all backends in this session "
  17. "pool will handle connection accessing this database. If session_pool_port is non zero then postmaster will always spawn dedicated (non-pooling) "
  18. " backends at the main Postgres port. If session_pool_port is zero and session_pool_size is not zero, then sessions (pooled connection) will be also "
  19. "accepted at main port. Session pool ports are allocated sequentially: if Postgres main port is 5432 and session_pool_ports is 2, "
  20. "then ports 5433 and 5434 will be used for connection pooling.")
  21. },
  22. &SessionPoolPorts,
  23. 0, 0, MAX_SESSION_PORTS,
  24. NULL, NULL, NULL
  25. },

2、如果是postgres库,不使用pool模式,使用dedidate server模式。

区分是否postgres库的代码

src/backend/tcop/postgres.c

  1. /* Serve all conections to "postgres" database by dedicated backends */
  2. if (SessionPoolSize != 0 && strcmp(dbname, "postgres") == 0) // 连接postgres,一律使用dedicate server, 方便DBA用户上去维护 (在所有pool backend process都activate时,保证能连接数据库)
  3. {
  4. elog(LOG, "Backend is dedicated");
  5. SessionPoolSize = 0;
  6. closesocket(SessionPoolSock);
  7. SessionPoolSock = PGINVALID_SOCKET;
  8. }
  9. /* Assign session for this backend in case of session pooling */
  10. if (SessionPoolSize != 0)
  11. {
  12. MemoryContext oldcontext;
  13. ActiveSession = (SessionContext*)calloc(1, sizeof(SessionContext));
  14. ActiveSession->memory = AllocSetContextCreate(TopMemoryContext,
  15. "SessionMemoryContext",
  16. ALLOCSET_DEFAULT_SIZES);
  17. oldcontext = MemoryContextSwitchTo(ActiveSession->memory);
  18. ActiveSession->id = CreateSessionId();
  19. ActiveSession->port = MyProcPort;
  20. ActiveSession->eventSet = FeBeWaitSet;
  21. BackendPort = MyProcPort;
  22. MemoryContextSwitchTo(oldcontext);
  23. }

测试PG内置连接池是什么模式(transaction 模式)

1、创建一个普通用户与库

  1. create role digoal login;
  2. create database digoal owner digoal;

2、目前内置连接池的POOL模式为事务级 pool。同一个backend process,某个活跃会话的事务执行结束后,对应backend process的资源即可给同一backend process上的其他session利用。

3、设置为只有1个BACKEND PROCESS

  1. session_pool_size=1
  2. 重启数据库

4、创建测试表

  1. create table a (id int, info text);
  2. insert into a values (1,'test');

5、SESISON A:

查看它的backend process的pid, 同时开启一个事务

  1. digoal=> select pg_backend_pid();
  2. pg_backend_pid
  3. ----------------
  4. 56112
  5. (1 row)
  6. digoal=> begin;
  7. BEGIN
  8. digoal=> select * from a;
  9. id | info
  10. ----+------
  11. 1 | test
  12. (1 row)

6、SESISON B:

连接数据库,堵塞,因为只有1个backend process,并且这个backend process当前繁忙。

  1. psql -p 4001 digoal digoal
  2. hang

7、SESISON A:

结束会话

  1. end;

8、SESISON B:

连接成功,查看它的backend process的pid,与session a的backend process的pid一致,所以会话A与B是共用一个backend process的。

  1. digoal=> select pg_backend_pid();
  2. pg_backend_pid
  3. ----------------
  4. 56112
  5. (1 row)

9、SESISON A:

开启事务

  1. digoal=> begin;
  2. BEGIN
  3. digoal=> select * from a;
  4. id | info
  5. ----+------
  6. 1 | test
  7. (1 row)

10、SESISON B:

执行SQL处于等待状态

  1. digoal=> select count(*) from pg_stat_activity ;
  2. hang

结论:Postgrespro pool模式为transaction模式,事务结束后,这个backend process才能给映射到这个backend process的其他会话使用。

目前的版本:session一定映射到一个backend process后,就不能漂移给其他的backend process,所以以上CASE,即使我们有多个shared backend process,实际上SESSION B也不能用到其他空闲中的backend process,因为它不能漂移到其他的backend process。

postgres pool版本目前存在的一些问题

问题1

discard all 释放同一个backend process下的所有变量,并不是当前session自己的变量,所以会导致绑定到这个backend process的所有session的变量丢失。

例如造成其他会话已经创建的prepared statements丢失,异常。

测试

  1. digoal=> \h discard
  2. Command: DISCARD
  3. Description: discard session state
  4. Syntax:
  5. DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }

1、SESSION A:

  1. digoal=> select pg_backend_pid();
  2. pg_backend_pid
  3. ----------------
  4. 56112
  5. (1 row)
  6. digoal=> prepare p1 (int) as select * from a where id=$1;
  7. PREPARE
  8. digoal=> execute p1(1);
  9. id | info
  10. ----+------
  11. 1 | test
  12. (1 row)

2、SESSION B:

  1. digoal=> select pg_backend_pid();
  2. pg_backend_pid
  3. ----------------
  4. 56112
  5. (1 row)
  6. digoal=> execute p1(1);
  7. ERROR: prepared statement "p1" does not exist

discard all

  1. digoal=> discard all;
  2. DISCARD ALL

3、SESSION A:

  1. digoal=> execute p1(1);
  2. ERROR: prepared statement "p1" does not exist

问题2

ctrl_c退出会话,会导致数据库crash , recovery.

这个用pgbench压测,并ctrl_c pgbench就可以发现问题

配置pgbench压测支持超过1000个连接

1、编译pgbench,支持超过1000个测试连接,参考如下方法

《PostgreSQL pgbench 支持100万连接》

用一个新的PostgreSQL编译一下pgbench,conn_pool版本的pg 11版本可能太老,没有办法融合这个pgbench的patch

  1. wget https://ftp.postgresql.org/pub/snapshot/dev/postgresql-snapshot.tar.bz2
  2. tar -jxvf postgresql-snapshot.tar.bz2
  3. cd postgresql-11devel

patch pgbench参考 《PostgreSQL pgbench 支持100万连接》

假设我把它编译到了 pgsql11/bin/pgbench ,可以拷贝到conn_pool版本的bin目录中

  1. cp pgsql11/bin/pgbench ./pgsql11_pool/bin/

用pgbench压测,可以校验一下前面提到的,如果session数超过pool的backend process数量,那么多个session 会映射到同一个backend process

当discard all时,影响的是同一个backend process下的所有session

测试

  1. 修改配置
  2. session_pool_size=56
  3. session_pool_ports=0
  4. 重启数据库

压测,开启8000个连接。

  1. pgbench -i -s 20 -U digoal digoal
  2. pgbench -M prepared -n -r -P 1 -p 4001 -c 8000 -j 8000 -T 12000 -U digoal digoal

压测过程中,discard all

SESSION A:

  1. psql -p 4001 -U digoal digoal
  2. discard all;

观察到pgbench 报错的自有一部分连接

  1. progress: 460.0 s, 53016.7 tps, lat 38.635 ms stddev 4.520
  2. client 1253 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  3. client 929 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  4. client 873 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  5. client 1264 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  6. client 369 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  7. client 201 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  8. client 593 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  9. client 152 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  10. client 257 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  11. client 602 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  12. client 295 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  13. client 518 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  14. client 456 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  15. client 761 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  16. client 763 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  17. client 90 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  18. client 817 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  19. client 998 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  20. client 1993 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  21. client 1624 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  22. client 33 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  23. client 1721 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  24. client 1988 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  25. client 1657 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  26. client 1769 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  27. client 1752 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  28. client 1433 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  29. client 1545 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  30. client 1152 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  31. client 1321 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  32. client 1209 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  33. client 1713 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  34. client 1490 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  35. client 537 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  36. client 1040 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  37. client 982 aborted in command 4 (SQL) of script 0; ERROR: prepared statement "P0_4" does not exist
  38. progress: 461.0 s, 52332.2 tps, lat 38.882 ms stddev 4.794

压测

注意pgbench的-j参数必须要与-c connection数量一致,否则看不出效果。

1、测试CASE如下

  1. TPC-B模型
  2. 数据量200万,1亿。
  3. scale = 20
  4. scale = 1000
  5. 连接数
  6. 64,512,2048,8192,19900

分别测试有POOL,无POOL,对比性能以及PERF

2、测试脚本

  1. vi test.sh
  2. #!/bin/bash
  3. for DB in digoal postgres
  4. do
  5. for S in 20 1000
  6. do
  7. for CONN in 64 512 2048 8192 19900
  8. do
  9. pgbench -i -s $S --unlogged-tables -U $DB $DB
  10. pgbench -M prepared -n -r -c $CONN -j $CONN -T 300 -U $DB $DB >>./test.log
  11. done
  12. done
  13. done
  14. chmod 700 test.sh
  15. nohup ./test.sh >/dev/null 2>&1 &

3、对比 perf

连接数越多,越明显的看到,无pool与有pool时的差异

3.1、无pool,进程数与连接数一致,瓶颈主要集中在XidInMVCCSnapshot

  1. Samples: 889K of event 'cpu-clock', Event count (approx.): 183087710747
  2. Overhead Shared Object Symbol
  3. 69.96% postgres [.] XidInMVCCSnapshot
  4. 9.10% postgres [.] TransactionIdIsInProgress
  5. 4.57% [kernel] [k] tg_load_down
  6. 2.17% [kernel] [k] _raw_spin_unlock_irqrestore
  7. 1.28% postgres [.] TransactionIdPrecedes
  8. 0.85% [kernel] [k] finish_task_switch

3.2、有pool,进程数最多56个。完全没有XidInMVCCSnapshot瓶颈,和pgbouncer连接池看到的效果一样。

  1. Samples: 1M of event 'cpu-clock', Event count (approx.): 274667629477
  2. Overhead Shared Object Symbol
  3. 29.75% [kernel] [k] _raw_spin_unlock_irqrestore
  4. 3.64% [kernel] [k] finish_task_switch
  5. 2.55% postgres [.] hash_search_with_hash_value
  6. 1.72% postgres [.] GetSnapshotData
  7. 0.97% postgres [.] LWLockAttemptLock
  8. 0.82% postgres [.] AllocSetAlloc
  9. 0.82% libc-2.17.so [.] __memcpy_ssse3_back

4、测试结果

4.1、 200万数据量 TPC-B

连接数社区版本TPSpostgres buildin_pool版本TPS
645444053765
5122495752666
2048330151451
819259649493
1990042748062

4.2、 1亿数据量 TPC-B

连接数社区版本TPSpostgres buildin_pool版本TPS
648146084356
5127280581388
20481090280029
8192772979281
1990097181247

5、使用POOL版本,当压测19900个连接时,同一时刻,另外开启一个pgbench,连一个线程,使用同一个POOL,看是否相互有影响?

同一个pool由于一个backend process要处理多个session的请求,而且当前处于压测状态,每个session都非常繁忙,所以在pool中新建的压测线程,RT有500多毫秒。

但是整体TPS的吞吐仍然在4万多。

  1. pgbench -M prepared -n -r -P 1 -c 1 -j 1 -T 120 -U digoal digoal
  2. progress: 4.0 s, 0.0 tps, lat 0.000 ms stddev 0.000
  3. progress: 4.0 s, 0.0 tps, lat 0.000 ms stddev 0.000
  4. progress: 5.0 s, 2.0 tps, lat 2202.781 ms stddev 1719.566
  5. progress: 6.0 s, 2.0 tps, lat 473.551 ms stddev 7.536
  6. progress: 7.0 s, 2.0 tps, lat 469.732 ms stddev 3.142
  7. progress: 8.0 s, 2.0 tps, lat 522.022 ms stddev 20.761
  8. progress: 9.0 s, 1.0 tps, lat 560.503 ms stddev 0.000
  9. progress: 10.0 s, 2.0 tps, lat 578.549 ms stddev 2.200
  10. progress: 11.0 s, 2.0 tps, lat 500.774 ms stddev 17.558
  11. progress: 12.0 s, 2.0 tps, lat 511.029 ms stddev 14.090
  12. progress: 13.0 s, 2.0 tps, lat 483.532 ms stddev 10.664
  13. progress: 14.0 s, 2.0 tps, lat 500.410 ms stddev 6.650
  14. progress: 15.0 s, 2.0 tps, lat 472.913 ms stddev 34.858
  15. progress: 16.0 s, 2.0 tps, lat 484.720 ms stddev 12.692
  16. progress: 17.0 s, 3.0 tps, lat 495.911 ms stddev 5.532
  17. progress: 18.0 s, 1.0 tps, lat 463.760 ms stddev 0.000
  18. progress: 19.0 s, 2.0 tps, lat 526.498 ms stddev 23.234

6、使用POOL版本,当压测19900个连接时,同一时刻,另外开启一个pgbench,连一个线程,使用另一个空闲的POOL,或者使用dedicate server,看是否相互有影响?

dedicate server,与社区版本风格一致,一个backend process对应一个会话,所以我们看到RT只有0.6毫秒左右。

  1. pgbench -M prepared -n -r -P 1 -c 1 -j 1 -T 120 -U postgres postgres
  2. progress: 1.0 s, 1499.9 tps, lat 0.665 ms stddev 0.203
  3. progress: 2.0 s, 1514.0 tps, lat 0.660 ms stddev 0.187
  4. progress: 3.0 s, 1612.1 tps, lat 0.620 ms stddev 0.146
  5. progress: 4.0 s, 1567.0 tps, lat 0.638 ms stddev 0.502
  6. progress: 5.0 s, 1628.1 tps, lat 0.614 ms stddev 0.235
  7. progress: 6.0 s, 1644.0 tps, lat 0.608 ms stddev 0.143
  8. progress: 7.0 s, 1649.9 tps, lat 0.606 ms stddev 0.147
  9. progress: 8.0 s, 1635.1 tps, lat 0.611 ms stddev 0.165
  10. progress: 9.0 s, 1485.0 tps, lat 0.674 ms stddev 0.715

小结与BUG

1. BUG,postgres pool版本,一个backend process对应多个客户端会话(对应关系固定不变,所以在一个backend变量中可以记住所有的session 变量内容)。

目前discard会导致释放整个backend的SESSION 变量。需要修订discard, 应该以虚拟session为单位释放,而不是后端为单位释放。

2. BUG,postgres pool版本,目前disconnect会导致数据库crash。需要修正disconnect.

3. postgres pool版本,目前为事务级 pool。同一个backend process,某个活跃会话的事务执行结束后,对应backend process的资源即可给同一backend process上的其他session利用。

如果客户端idle in transaction很久,实际上也会占用这个backend process很久,其他会话无法使用到这个backend porocess。

阿里云的RDS PostgreSQL 高并发版本设计时避免了以上问题。

4. postgres pool版本,session一定映射到一个backend process后,就不能漂移给其他的backend process,所以以上CASE,即使我们有多个shared backend process,实际上SESSION B也不能用到其他空闲中的backend process,因为它不能漂移到其他的backend process。

改进建议,一个session 不要映射(绑定)到单一的backend process,所有backend process可以给所有的session 共享。

5、内置连接池模式,相比pgbouncer这种外部连接池的好处:

对业务的改造最少,例如支持prepared statement。

防火墙的配置不变。

应用到数据库不需要经过额外的连接池,跳数更少,RT更低。

6、社区版本在高并发时,主要的瓶颈在XidInMVCCSnapshot,POOL很好的规避了这个问题。

7、pool还解决了一个问题,PAGE TABLE的问题

《PostgreSQL Huge Page 使用建议 - 大内存主机、实例注意》

参考

https://github.com/postgrespro/postgresql.builtin_pool

《阿里云 RDS PostgreSQL 高并发特性 vs 社区版本 (1.6万并发: 3倍吞吐,240倍响应速度)》

postgrespro的pool设计有非常值得借鉴的地方,阿里云 RDS PostgreSQL 高并发版本还有改进空间,可以实现更高吞吐。