简介
在RocksDB中,每次写入它都会先写WAL,然后再写入MemTable,这次我们就来分析这两个逻辑具体是如何实现的. 首先需要明确的是在RocksDB中,WAL的写入是单线程顺序串行写入的,而MemTable则是可以并发多线程写入的。
而在RocksDB 5.5中引进了一个选项enable_pipelined_write,这个选项的目的就是将WAL和MemTable的写入pipeline化, 也就是说当一个线程写完毕WAL之后,此时在WAL的write队列中等待的其他的write则会开始继续写入WAL, 而当前线程将会继续 写入MemTable.此时就将不同的Writer的写入WAL和写入MemTable并发执行了.
实现
我们这里只来分析pipeline的实现,核心函数就是DBImpl::PipelinedWriteImpl.
- 每一个DB(DBImpl)都有一个write_thread_(class WriteThread).
每次调用Write的时候会先写入WAL, 此时新建一个WriteThread::Writer对象,并将这个对象加入到一个Group中(调用JoinBatchGroup)
WriteThread::Writer w(write_options, my_batch, callback, log_ref,
disable_memtable);
write_thread_.JoinBatchGroup(&w);
然后我们来看JoinBatchGroup,这个函数主要是用来讲所有的写入WAL加入到一个Group中.这里可以看到当当前的Writer 对象是leader(比如第一个进入的对象)的时候将会直接返回,否则将会等待知道更新为对应的状态.
void WriteThread::JoinBatchGroup(Writer* w) {
...................................
bool linked_as_leader = LinkOne(w, &newest_writer_);
if (linked_as_leader) {
SetState(w, STATE_GROUP_LEADER);
}
TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:Wait", w);
if (!linked_as_leader) {
/**
* Wait util:
* 1) An existing leader pick us as the new leader when it finishes
* 2) An existing leader pick us as its follewer and
* 2.1) finishes the memtable writes on our behalf
* 2.2) Or tell us to finish the memtable writes in pralallel
* 3) (pipelined write) An existing leader pick us as its follower and
* finish book-keeping and WAL write for us, enqueue us as pending
* memtable writer, and
* 3.1) we become memtable writer group leader, or
* 3.2) an existing memtable writer group leader tell us to finish memtable
* writes in parallel.
*/
AwaitState(w, STATE_GROUP_LEADER | STATE_MEMTABLE_WRITER_LEADER |
STATE_PARALLEL_MEMTABLE_WRITER | STATE_COMPLETED,
&jbg_ctx);
TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:DoneWaiting", w);
}
}
然后我们来看LinkOne函数,这个函数主要用来讲当前的Writer对象加入到group中,这里可以看到由于 写入是并发的因此对应的newest_writer_(保存最新的写入对象)需要原子操作来更新.
bool WriteThread::LinkOne(Writer* w, std::atomic<Writer*>* newest_writer) {
assert(newest_writer != nullptr);
assert(w->state == STATE_INIT);
Writer* writers = newest_writer->load(std::memory_order_relaxed);
while (true) {
w->link_older = writers;
if (newest_writer->compare_exchange_weak(writers, w)) {
return (writers == nullptr);
}
}
}
当从JoinBatchGroup返回之后,当当前的Writer对象为leader的话,则将会把此leader下的所有的write都 链接到一个WriteGroup中(调用EnterAsBatchGroupLeader函数), 并开始写入WAL,这里要注意非leader的write将会直接 进入memtable的写入,这是因为非leader的write都将会被当前它所从属的leader来打包(group)写入,后面我们会看到实现.
size_t WriteThread::EnterAsBatchGroupLeader(Writer* leader,
WriteGroup* write_group) {
assert(leader->link_older == nullptr);
assert(leader->batch != nullptr);
assert(write_group != nullptr);
................................................
Writer* newest_writer = newest_writer_.load(std::memory_order_acquire);
// This is safe regardless of any db mutex status of the caller. Previous
// calls to ExitAsGroupLeader either didn't call CreateMissingNewerLinks
// (they emptied the list and then we added ourself as leader) or had to
// explicitly wake us up (the list was non-empty when we added ourself,
// so we have already received our MarkJoined).
CreateMissingNewerLinks(newest_writer);
// Tricky. Iteration start (leader) is exclusive and finish
// (newest_writer) is inclusive. Iteration goes from old to new.
Writer* w = leader;
while (w != newest_writer) {
w = w->link_newer;
.........................................
w->write_group = write_group;
size += batch_size;
write_group->last_writer = w;
write_group->size++;
}
..............................
}
这里注意到遍历是通过link_newer进行的,之所以这样做是相当于在写入WAL之前,对于当前leader的Write 做一次snapshot(通过CreateMissingNewerLinks函数).
void WriteThread::CreateMissingNewerLinks(Writer* head) {
while (true) {
Writer* next = head->link_older;
if (next == nullptr || next->link_newer != nullptr) {
assert(next == nullptr || next->link_newer == head);
break;
}
next->link_newer = head;
head = next;
}
}
上述操作进行完毕之后,进入写WAL操作,最终会把这个write_group打包成一个writeBatch(通过MergeBatch函数)进行写入.
if (w.ShouldWriteToWAL()) {
...............................
w.status = WriteToWAL(wal_write_group, log_writer, log_used,
need_log_sync, need_log_dir_sync, current_sequence);
}
当当前的leader将它自己与它的follow写入之后,此时它将需要写入memtable,那么此时之前还阻塞的Writer,分为两种情况 第一种是已经被当前的leader打包写入到WAL,这些writer(包括leader自己)需要将他们链接到memtable writer list.还有一种情况,那就是还没有写入WAL的,此时这类writer则需要选择一个leader然后继续写入WAL.
void WriteThread::ExitAsBatchGroupLeader(WriteGroup& write_group,
Status status) {
Writer* leader = write_group.leader;
Writer* last_writer = write_group.last_writer;
assert(leader->link_older == nullptr);
.....................................
if (enable_pipelined_write_) {
// Notify writers don't write to memtable to exit.
......................................
// Link the ramaining of the group to memtable writer list.
if (write_group.size > 0) {
if (LinkGroup(write_group, &newest_memtable_writer_)) {
// The leader can now be different from current writer.
SetState(write_group.leader, STATE_MEMTABLE_WRITER_LEADER);
}
}
// Reset newest_writer_ and wake up the next leader.
Writer* newest_writer = last_writer;
if (!newest_writer_.compare_exchange_strong(newest_writer, nullptr)) {
Writer* next_leader = newest_writer;
while (next_leader->link_older != last_writer) {
next_leader = next_leader->link_older;
assert(next_leader != nullptr);
}
next_leader->link_older = nullptr;
SetState(next_leader, STATE_GROUP_LEADER);
}
AwaitState(leader, STATE_MEMTABLE_WRITER_LEADER |
STATE_PARALLEL_MEMTABLE_WRITER | STATE_COMPLETED,
&eabgl_ctx);
} else {
.....................................
}
}
接下来我们来看写入memtable的操作,这里逻辑类似写入WAL,如果是leader的话,则依旧会创建一个group(WriteGroup),然后遍历需要写入memtable的writer,将他们都加入到group中(EnterAsMemTableWriter),然后则设置并发执行的大小,以及设置对应状态(LaunchParallelMemTableWriters).这里注意每次setstate就将会唤醒之前阻塞的Writer.
void WriteThread::LaunchParallelMemTableWriters(WriteGroup* write_group) {
assert(write_group != nullptr);
write_group->running.store(write_group->size);
for (auto w : *write_group) {
SetState(w, STATE_PARALLEL_MEMTABLE_WRITER);
}
}
这里要注意,在构造memtable的group的时候,我们不需要创建link_newer,因为之前在写入WAL的时候,我们已经构造好link_newer,那么此时我们使用构造好的group也就是表示这个group中包含的都是已经写入到WAL的操作.
void WriteThread::EnterAsMemTableWriter(Writer* leader,
WriteGroup* write_group) {
....................................
if (!allow_concurrent_memtable_write_ || !leader->batch->HasMerge()) {
....................................................
}
write_group->last_writer = last_writer;
write_group->last_sequence =
last_writer->sequence + WriteBatchInternal::Count(last_writer->batch) - 1;
}
最后开始执行写入MemTable的操作,之前在写入WAL的时候被阻塞的所有Writer此时都会进入下面这个逻辑,此时也就意味着 并发写入MemTable.
if (w.state == WriteThread::STATE_PARALLEL_MEMTABLE_WRITER) {
.........................
w.status = WriteBatchInternal::InsertInto(
&w, w.sequence, &column_family_memtables, &flush_scheduler_,
write_options.ignore_missing_column_families, 0 /*log_number*/, this,
true /*concurrent_memtable_writes*/);
if (write_thread_.CompleteParallelMemTableWriter(&w)) {
MemTableInsertStatusCheck(w.status);
versions_->SetLastSequence(w.write_group->last_sequence);
write_thread_.ExitAsMemTableWriter(&w, *w.write_group);
}
}
最后当当前group的所有Writer都写入MemTable之后,则将会调用ExitAsMemTableWriter来进行收尾工作.如果有新的memtable writer list需要处理,那么则唤醒对应的Writer,然后设置已经处理完毕的Writer的状态.
void WriteThread::ExitAsMemTableWriter(Writer* /*self*/,
WriteGroup& write_group) {
Writer* leader = write_group.leader;
Writer* last_writer = write_group.last_writer;
Writer* newest_writer = last_writer;
if (!newest_memtable_writer_.compare_exchange_strong(newest_writer,
nullptr)) {
CreateMissingNewerLinks(newest_writer);
Writer* next_leader = last_writer->link_newer;
assert(next_leader != nullptr);
next_leader->link_older = nullptr;
SetState(next_leader, STATE_MEMTABLE_WRITER_LEADER);
}
Writer* w = leader;
while (true) {
if (!write_group.status.ok()) {
w->status = write_group.status;
}
Writer* next = w->link_newer;
if (w != leader) {
SetState(w, STATE_COMPLETED);
}
if (w == last_writer) {
break;
}
w = next;
}
// Note that leader has to exit last, since it owns the write group.
SetState(leader, STATE_COMPLETED);
}
总结
我们可以看到在RocksDB中,WAL的写入始终是串行写入,而MemTable可以多线程并发写入,也就是说在系统压力到一定阶段的时候, 写入WAL肯定会成为瓶颈.