书栈网 · BookStack 本次搜索耗时 0.025 秒,为您找到 1336 个相关结果.
  • 练习

    练习 你怎样去定义强化学习?它与传统的监督以及非监督学习有什么不同? 你能想到什么本章没有提到过的强化学习应用?智能体是什么?什么是可能的动作,什么是奖励? 什么是衰减率?如果你修改了衰减率那最优策略会变化吗? 你怎么去定义强化学习智能体的表现? 什么是信用评估问题?它怎么出现的?你怎么解决? 使用回放记忆的目的是什么? 什么是闭策略 RL 算法? 使...
  • 关联权重

    关联权重 当自编码器整齐地对称时,就像我们刚刚构建的那样,一种常用技术是将解码器层的权重与编码器层的权重相关联。 这样减少了模型中的权重数量,加快了训练速度,并限制了过度拟合的风险。 具体来说,如果自编码器总共具有N 个层(不计入输入层),并且 表示第L 层的连接权重(例如,层 1 是第一隐藏层,则层N / 2 是编码 层,而层N 是输出层),则解码...
  • 控制依赖关系

    控制依赖关系 在某些情况下,即使所有依赖的操作都已执行,推迟对操作的求值可能也是明智之举。例如,如果它使用大量内存,但在图形中只需要更多内存,则最好在最后一刻对其进行求值,以避免不必要地占用其他操作可能需要的 RAM。 另一个例子是依赖位于设备外部的数据的一组操作。 如果它们全部同时运行,它们可能会使设备的通信带宽达到饱和,并最终导致所有等待 I/O。 ...
  • 数据增强

    数据增强 最后一个正则化技术,数据增强,包括从现有的训练实例中产生新的训练实例,人为地增加了训练集的大小。 这将减少过拟合,使之成为正则化技术。 诀窍是生成逼真的训练实例; 理想情况下,一个人不应该能够分辨出哪些是生成的,哪些不是生成的。 而且,简单地加白噪声也无济于事。 你应用的修改应该是可以学习的(白噪声不是)。 例如,如果您的模型是为了分类蘑菇图...
  • 附录一、有用的 Python 数据科学包

    附录一、有用的 Python 数据科学包 数据科学模块 核心包 文本挖掘 数学和统计学 网络爬虫 可视化库 图论/网络 深度学习 标准库的有用部分 基本工具 实用函数 文件格式 数据对象 附录一、有用的 Python 数据科学包 原文:Useful Python Packages for Data Science 译者...
  • Loading and Preparing OFRecord Dataset

    Loading and Preparing OFRecord Dataset What is OFRecord Dataset The Method to Load OFRecord Dataset The transition between other data format data and OFRecord dataset The install...
  • Sequential 顺序模型 API

    Sequential 模型 API Sequential 模型方法 compile fit evaluate predict train_on_batch test_on_batch predict_on_batch fit_generator evaluate_generator predict_generator get_layer ...
  • Building Python function-based components

    Building Python function-based components Before you begin Getting started with Python function-based components Building Python function-based components Using and installing Py...
  • 贡献

    关于 Github Issues 和 Pull Requests 漏洞报告 请求新功能 请求贡献代码 Pull Requests 合并请求 添加新的样例 关于 Github Issues 和 Pull Requests 找到一个漏洞?有一个新的功能建议?想要对代码库做出贡献?请务必先阅读这些。 漏洞报告 你的代码不起作用,你确定问题在...
  • Getting Started with Katib

    Getting Started with Katib Katib setup Installing Katib Accessing the Katib UI The new Katib UI Examples Example using random algorithm TensorFlow example PyTorch example C...