书栈网 · BookStack 本次搜索耗时 0.007 秒,为您找到 1088 个相关结果.
  • 图数据库 HugeGraph v0.12 使用手册

    HugeGraph是一款易用、高效、通用的开源图数据库系统(Graph Database,GitHub项目地址), 实现了Apache TinkerPop3框架及完全兼容Gremlin查询语言, 具备完善的工具链组件,助力用户轻松构建基于图数据库之上的应用和产品。HugeGraph支持百亿以上的顶点和边快速导入,并提供毫秒级的关联关系查询能力(OLTP), ...
  • Deis文档翻译

    该文档由社区自发组织翻译,旨在促进Deis在国内的传播以及发展。Deis是一个基于Docker和CoreOS的开源Paas平台,用户可以在Deis平台上部署并管理应用程序。Deis 1.0的发布,也标志着它已经可以应用于产品环境。Docker是云计算领域的新起之秀,CoreOS又在Docker的基础上演变为一个轻量级容器化Linux发行版,而Deis结合了D...
  • KubeVela v1.1 中文文档

    KubeVela 是一个简单易用且高度可扩展的应用管理平台与核心引擎。KubeVela 是基于 Kubernetes 与 OAM 技术构建的。详细的说,对于应用开发人员来讲,KubeVela 是一个非常低心智负担的云原生应用管理平台,核心功能是让开发人员方便快捷地在 Kubernetes 上定义与交付现代微服务应用,无需了解任何 Kubernetes 本身相...
  • KubeVela v1.5 Documentation

    KubeVela 是一个简单易用且高度可扩展的应用管理平台与核心引擎。KubeVela 是基于 Kubernetes 与 OAM 技术构建的。详细的说,对于应用开发人员来讲,KubeVela 是一个非常低心智负担的云原生应用管理平台,核心功能是让开发人员方便快捷地在 Kubernetes 上定义与交付现代微服务应用,无需了解任何 Kubernetes 本身相...
  • KubeVela v1.6 Documentation

    KubeVela 是一个简单易用且高度可扩展的应用管理平台与核心引擎。KubeVela 是基于 Kubernetes 与 OAM 技术构建的。详细的说,对于应用开发人员来讲,KubeVela 是一个非常低心智负担的云原生应用管理平台,核心功能是让开发人员方便快捷地在 Kubernetes 上定义与交付现代微服务应用,无需了解任何 Kubernetes 本身相...
  • KubeVela v1.6 中文文档

    KubeVela 是一个简单易用且高度可扩展的应用管理平台与核心引擎。KubeVela 是基于 Kubernetes 与 OAM 技术构建的。详细的说,对于应用开发人员来讲,KubeVela 是一个非常低心智负担的云原生应用管理平台,核心功能是让开发人员方便快捷地在 Kubernetes 上定义与交付现代微服务应用,无需了解任何 Kubernetes 本身相...
  • Presto 0.272.1 Documentation

    Presto是Facebook最新研发的数据查询引擎,可对250PB以上的数据进行快速地交互式分析。据称该引擎的性能是 Hive 的 10 倍以上。 PrestoDB 是 Facebook 推出的一个大数据的分布式 SQL 查询引擎。可对从数 G 到数 P 的大数据进行交互式的查询,查询的速度达到商业数据仓库的级别。Presto 可以查询包括 Hive、Ca...
  • Redisson 使用手册

    Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid)。它不仅提供了一系列的分布式的Java常用对象,还提供了许多分布式服务。其中包括(BitSet, Set, Multimap, SortedSet, Map, List, Queue, BlockingQueue, Deque, BlockingD...
  • Way to Algorithm - 算法之路

    本书围绕大学生计算机算法,收集和整理了比较常见的算法与数据结构写成。借鉴了一些经典的算法书籍,和互联网上的资料。本书通过数学公式和图画的方式来描述算法,并配备源码实现、测试用例,以及一些在Online Judge网站上的题目,来帮助读者真正理解算法。
  • Edward中文文档

    Edward 是一个用于概率建模、推理和评估的 Python 库。它是一个用于快速实验和研究概率模型的测试平台,其涵盖的模型范围从在小数据集上的经典层次模型到在大数据集上的复杂深度概率模型。Edward 融合了以下三个领域:贝叶斯统计学和机器学习、深度学习、概率编程。