书栈网 · BookStack 本次搜索耗时 0.009 秒,为您找到 360 个相关结果.
  • Chaos Mesh v1.1.4 Documentation

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • Chaos Mesh v1.2.3 Documentation

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • Chaos Mesh v2.0.4 中文文档

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • Chaos Mesh v2.2.3 中文文档

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • Chaos Mesh v2.3.2 Documentation

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • Chaos Mesh v2.3.2 中文文档

    Chaos Mesh 是一个开源的云原生混沌工程平台,提供丰富的故障模拟类型,具有强大的故障场景编排能力,方便用户在开发测试中以及生产环境中模拟现实世界中可能出现的各类异常,帮助用户发现系统潜在的问题。Chaos Mesh 提供完善的可视化操作,旨在降低用户进行混沌工程的门槛。用户可以方便地在 Web UI 界面上设计自己的混沌场景,以及监控混沌实验的运行状...
  • 命令行的艺术

    熟练使用命令行是一种常常被忽视,或被认为难以掌握的技能,但实际上,它会提高你作为工程师的灵活性以及生产力。本文是一份我在 Linux 上工作时,发现的一些命令行使用技巧的摘要。有些技巧非常基础,而另一些则相当复杂,甚至晦涩难懂。这篇文章并不长,但当你能够熟练掌握这里列出的所有技巧时,你就学会了很多关于命令行的东西了。
  • 滴滴 DoKit 3.0 使用教程

    DoraemonKit,简称 DoKit,一款功能齐全的客户端( iOS 、Android、微信小程序 )研发助手。DoraemonKit 是一个功能平台,能够让每一个 App 快速接入一些常用的或者你没有实现的一些辅助开发工具、测试效率工具、视觉辅助工具,而且能够完美在 Doraemon 面板中接入你已经实现的与业务紧密耦合的一些非通有的辅助工具,并搭配我...
  • JetLinks v1.7 物联网基础平台文档

    JetLinks 基于Java8,Spring Boot 2.x ,WebFlux,Netty,Vert.x,Reactor等开发, 是一个全响应式的物联网平台。支持统一物模型管理,多种设备,多种厂家,统一管理。统一设备连接管理,多协议适配(TCP,MQTT,UDP,CoAP,HTTP等),屏蔽网络编程复杂性,灵活接入不同厂家不同协议的设备。实时数据处理,设...
  • 计算与推断思维 中文版

    数据科学是通过探索,预测和推断,从大量不同的数据集中得出有用的结论。探索涉及识别信息中的规律。预测涉及使用我们所知道的信息,对我们希望知道的值作出知情的猜测。推断涉及量化我们的确定程度:我们发现的这些规律是否也出现在新的观察中?我们的预测有多准确?我们用于探索的主要工具是可视化和描述性统计,用于预测的是机器学习和优化,用于推理的是统计测试和模型。