Functions
test_functions.zig
const std = @import("std");
const builtin = @import("builtin");
const native_arch = builtin.cpu.arch;
const expect = std.testing.expect;
// Functions are declared like this
fn add(a: i8, b: i8) i8 {
if (a == 0) {
return b;
}
return a + b;
}
// The export specifier makes a function externally visible in the generated
// object file, and makes it use the C ABI.
export fn sub(a: i8, b: i8) i8 { return a - b; }
// The extern specifier is used to declare a function that will be resolved
// at link time, when linking statically, or at runtime, when linking
// dynamically. The quoted identifier after the extern keyword specifies
// the library that has the function. (e.g. "c" -> libc.so)
// The callconv specifier changes the calling convention of the function.
const WINAPI: std.builtin.CallingConvention = if (native_arch == .x86) .Stdcall else .C;
extern "kernel32" fn ExitProcess(exit_code: u32) callconv(WINAPI) noreturn;
extern "c" fn atan2(a: f64, b: f64) f64;
// The @setCold builtin tells the optimizer that a function is rarely called.
fn abort() noreturn {
@setCold(true);
while (true) {}
}
// The naked calling convention makes a function not have any function prologue or epilogue.
// This can be useful when integrating with assembly.
fn _start() callconv(.Naked) noreturn {
abort();
}
// The inline calling convention forces a function to be inlined at all call sites.
// If the function cannot be inlined, it is a compile-time error.
fn shiftLeftOne(a: u32) callconv(.Inline) u32 {
return a << 1;
}
// The pub specifier allows the function to be visible when importing.
// Another file can use @import and call sub2
pub fn sub2(a: i8, b: i8) i8 { return a - b; }
// Function pointers are prefixed with `*const `.
const call2_op = *const fn (a: i8, b: i8) i8;
fn do_op(fn_call: call2_op, op1: i8, op2: i8) i8 {
return fn_call(op1, op2);
}
test "function" {
try expect(do_op(add, 5, 6) == 11);
try expect(do_op(sub2, 5, 6) == -1);
}
Shell
$ zig test test_functions.zig
1/1 test.function... OK
All 1 tests passed.
There is a difference between a function body and a function pointer. Function bodies are comptime-only types while function Pointers may be runtime-known.
Pass-by-value Parameters
Primitive types such as Integers and Floats passed as parameters are copied, and then the copy is available in the function body. This is called “passing by value”. Copying a primitive type is essentially free and typically involves nothing more than setting a register.
Structs, unions, and arrays can sometimes be more efficiently passed as a reference, since a copy could be arbitrarily expensive depending on the size. When these types are passed as parameters, Zig may choose to copy and pass by value, or pass by reference, whichever way Zig decides will be faster. This is made possible, in part, by the fact that parameters are immutable.
test_pass_by_reference_or_value.zig
const Point = struct {
x: i32,
y: i32,
};
fn foo(point: Point) i32 {
// Here, `point` could be a reference, or a copy. The function body
// can ignore the difference and treat it as a value. Be very careful
// taking the address of the parameter - it should be treated as if
// the address will become invalid when the function returns.
return point.x + point.y;
}
const expect = @import("std").testing.expect;
test "pass struct to function" {
try expect(foo(Point{ .x = 1, .y = 2 }) == 3);
}
Shell
$ zig test test_pass_by_reference_or_value.zig
1/1 test.pass struct to function... OK
All 1 tests passed.
For extern functions, Zig follows the C ABI for passing structs and unions by value.
Function Parameter Type Inference
Function parameters can be declared with anytype
in place of the type. In this case the parameter types will be inferred when the function is called. Use @TypeOf and @typeInfo to get information about the inferred type.
test_fn_type_inference.zig
const expect = @import("std").testing.expect;
fn addFortyTwo(x: anytype) @TypeOf(x) {
return x + 42;
}
test "fn type inference" {
try expect(addFortyTwo(1) == 43);
try expect(@TypeOf(addFortyTwo(1)) == comptime_int);
var y: i64 = 2;
try expect(addFortyTwo(y) == 44);
try expect(@TypeOf(addFortyTwo(y)) == i64);
}
Shell
$ zig test test_fn_type_inference.zig
1/1 test.fn type inference... OK
All 1 tests passed.
Function Reflection
test_fn_reflection.zig
const std = @import("std");
const math = std.math;
const testing = std.testing;
test "fn reflection" {
try testing.expect(@typeInfo(@TypeOf(testing.expect)).Fn.params[0].type.? == bool);
try testing.expect(@typeInfo(@TypeOf(testing.tmpDir)).Fn.return_type.? == testing.TmpDir);
try testing.expect(@typeInfo(@TypeOf(math.Log2Int)).Fn.is_generic);
}
Shell
$ zig test test_fn_reflection.zig
1/1 test.fn reflection... OK
All 1 tests passed.