Case Study: Sphinx-based Search
Sphinx is a search server, and powers the search feature on many sites. While the actual code necessary to integrate Yesod with Sphinx is relatively short, it touches on a number of complicated topics, and is therefore a great case study in how to play with some of the under-the-surface details of Yesod.
There are essentially three different pieces at play here:
Storing the content we wish to search. This is fairly straight-forward Persistent code, and we won’t dwell on it much in this chapter.
Accessing Sphinx search results from inside Yesod. Thanks to the sphinx package, this is actually very easy.
Providing the document content to Sphinx. This is where the interesting stuff happens, and will show how to deal with streaming content from a database directly to XML, which gets sent directly over the wire to the client.
The full code for this example can be found on FP Haskell Center.
Sphinx Setup
Unlike many of our other examples, to start with here we’ll need to actually configure and run our external Sphinx server. I’m not going to go into all the details of Sphinx, partly because it’s not relevant to our point here, and mostly because I’m not an expert on Sphinx.
Sphinx provides three main command line utilities: searchd
is the actual search daemon that receives requests from the client (in this case, our web app) and returns the search results. indexer
parses the set of documents and creates the search index. search
is a debugging utility that will run simple queries against Sphinx.
There are two important settings: the source and the index. The source tells Sphinx where to read document information from. It has direct support for MySQL and PostgreSQL, as well as a more general XML format known as xmlpipe2. We’re going to use the last one. This not only will give us more flexibility with choosing Persistent backends, but will also demonstrate some more powerful Yesod concepts.
The second setting is the index. Sphinx can handle multiple indices simultaneously, which allows it to provide search for multiple services at once. Each index will have a source it pulls from.
In our case, we’re going to provide a URL from our application (/search/xmlpipe
) that provides the XML file required by Sphinx, and then pipe that through to the indexer. So we’ll add the following to our Sphinx config file:
source searcher_src
{
type = xmlpipe2
xmlpipe_command = curl http://localhost:3000/search/xmlpipe
}
index searcher
{
source = searcher_src
path = /var/data/searcher
docinfo = extern
charset_type = utf-8
}
searchd
{
listen = 9312
pid_file = /var/run/sphinxsearch/searchd.pid
}
In order to build your search index, you would run indexer searcher
. Obviously this won’t work until you have your web app running. For a production site, it would make sense to run this command via a cron job so the index is regularly updated.
Basic Yesod Setup
Let’s get our basic Yesod setup going. We’re going to have a single table in the database for holding documents, which consist of a title and content. We’ll store this in a SQLite database, and provide routes for searching, adding documents, viewing documents and providing the xmlpipe file to Sphinx.
share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Doc
title Text
content Textarea
|]
data Searcher = Searcher
{ connPool :: ConnectionPool
}
mkYesod "Searcher" [parseRoutes|
/ HomeR GET
/doc/#DocId DocR GET
/add-doc AddDocR POST
/search SearchR GET
/search/xmlpipe XmlpipeR GET
|]
instance Yesod Searcher
instance YesodPersist Searcher where
type YesodPersistBackend Searcher = SqlBackend
runDB action = do
Searcher pool <- getYesod
runSqlPool action pool
instance YesodPersistRunner Searcher where -- see below
getDBRunner = defaultGetDBRunner connPool
instance RenderMessage Searcher FormMessage where
renderMessage _ _ = defaultFormMessage
Hopefully all of this looks pretty familiar by now. The one new thing we’ve defined here is an instance of YesodPersistRunner
. This is a typeclass necessary for creating streaming database responses. The default implementation (defaultGetDBRunner
) is almost always appropriate.
Next we’ll define some forms: one for creating documents, and one for searching:
addDocForm :: Html -> MForm Handler (FormResult Doc, Widget)
addDocForm = renderTable $ Doc
<$> areq textField "Title" Nothing
<*> areq textareaField "Contents" Nothing
searchForm :: Html -> MForm Handler (FormResult Text, Widget)
searchForm = renderDivs $ areq (searchField True) "Query" Nothing
The True
parameter to searchField makes the field auto-focus on page load. Finally, we have some standard handlers for the homepage (shows the add document form and the search form), the document display, and adding a document.
getHomeR :: Handler Html
getHomeR = do
docCount <- runDB $ count ([] :: [Filter Doc])
((_, docWidget), _) <- runFormPost addDocForm
((_, searchWidget), _) <- runFormGet searchForm
let docs = if docCount == 1
then "There is currently 1 document."
else "There are currently " ++ show docCount ++ " documents."
defaultLayout
[whamlet|
<p>Welcome to the search application. #{docs}
<form method=post action=@{AddDocR}>
<table>
^{docWidget}
<tr>
<td colspan=3>
<input type=submit value="Add document">
<form method=get action=@{SearchR}>
^{searchWidget}
<input type=submit value=Search>
|]
postAddDocR :: Handler Html
postAddDocR = do
((res, docWidget), _) <- runFormPost addDocForm
case res of
FormSuccess doc -> do
docid <- runDB $ insert doc
setMessage "Document added"
redirect $ DocR docid
_ -> defaultLayout
[whamlet|
<form method=post action=@{AddDocR}>
<table>
^{docWidget}
<tr>
<td colspan=3>
<input type=submit value="Add document">
|]
getDocR :: DocId -> Handler Html
getDocR docid = do
doc <- runDB $ get404 docid
defaultLayout
[whamlet|
<h1>#{docTitle doc}
<div .content>#{docContent doc}
|]
Searching
Now that we’ve got the boring stuff out of the way, let’s jump into the actual searching. We’re going to need three pieces of information for displaying a result: the document ID it comes from, the title of that document, and the excerpts. Excerpts are the highlighted portions of the document which contain the search term.
Search Result
So let’s start off by defining a Result datatype:
data Result = Result
{ resultId :: DocId
, resultTitle :: Text
, resultExcerpt :: Html
}
Next we’ll look at the search handler:
getSearchR :: Handler Html
getSearchR = do
((formRes, searchWidget), _) <- runFormGet searchForm
searchResults <-
case formRes of
FormSuccess qstring -> getResults qstring
_ -> return []
defaultLayout $ do
toWidget
[lucius|
.excerpt {
color: green; font-style: italic
}
.match {
background-color: yellow;
}
|]
[whamlet|
<form method=get action=@{SearchR}>
^{searchWidget}
<input type=submit value=Search>
$if not $ null searchResults
<h1>Results
$forall result <- searchResults
<div .result>
<a href=@{DocR $ resultId result}>#{resultTitle result}
<div .excerpt>#{resultExcerpt result}
|]
Nothing magical here, we’re just relying on the searchForm
defined above, and the getResults
function which hasn’t been defined yet. This function just takes a search string, and returns a list of results. This is where we first interact with the Sphinx API. We’ll be using two functions: query
will return a list of matches, and buildExcerpts
will return the highlighted excerpts. Let’s first look at getResults
:
getResults :: Text -> Handler [Result]
getResults qstring = do
sphinxRes' <- liftIO $ S.query config "searcher" qstring
case sphinxRes' of
ST.Ok sphinxRes -> do
let docids = map (toSqlKey . ST.documentId) $ ST.matches sphinxRes
fmap catMaybes $ runDB $ forM docids $ \docid -> do
mdoc <- get docid
case mdoc of
Nothing -> return Nothing
Just doc -> liftIO $ Just <$> getResult docid doc qstring
_ -> error $ show sphinxRes'
where
config = S.defaultConfig
{ S.port = 9312
, S.mode = ST.Any
}
query
takes three parameters: the configuration options, the index to search against (searcher in this case) and the search string. It returns a list of document IDs that contain the search string. The tricky bit here is that those documents are returned as Int64
values, whereas we need DocId
s. Fortunately, for the SQL Persist backends, we can just use the toSqlKey
function to perform the conversion.
If you’re dealing with a backend that has non-numeric IDs, like MongoDB, you’ll need to work out something a bit more clever than this.
We then loop over the resulting IDs to get a [Maybe Result]
value, and use catMaybes
to turn it into a [Result]
. In the where clause, we define our local settings, which override the default port and set up the search to work when any term matches the document.
Let’s finally look at the getResult
function:
getResult :: DocId -> Doc -> Text -> IO Result
getResult docid doc qstring = do
excerpt' <- S.buildExcerpts
excerptConfig
[escape $ docContent doc]
"searcher"
qstring
let excerpt =
case excerpt' of
ST.Ok texts -> preEscapedToHtml $ mconcat texts
_ -> ""
return Result
{ resultId = docid
, resultTitle = docTitle doc
, resultExcerpt = excerpt
}
where
excerptConfig = E.altConfig { E.port = 9312 }
escape :: Textarea -> Text
escape =
T.concatMap escapeChar . unTextarea
where
escapeChar '<' = "<"
escapeChar '>' = ">"
escapeChar '&' = "&"
escapeChar c = T.singleton c
buildExcerpts
takes four parameters: the configuration options, the textual contents of the document, the search index and the search term. The interesting bit is that we entity escape the text content. Sphinx won’t automatically escape these for us, so we must do it explicitly.
Similarly, the result from Sphinx is a list of Text
s. But of course, we’d rather have Html. So we concat that list into a single Text
and use preEscapedToHtml to make sure that the tags inserted for matches are not escaped. A sample of this HTML is:
… Departments. The President shall have <span class='match'>Power</span> to fill up all Vacancies
… people. Amendment 11 The Judicial <span class='match'>power</span> of the United States shall
… jurisdiction. 2. Congress shall have <span class='match'>power</span> to enforce this article by
… 5. The Congress shall have <span class='match'>power</span> to enforce, by appropriate legislation
…
Streaming xmlpipe output
We’ve saved the best for last. For the majority of Yesod handlers, the recommended approach is to load up the database results into memory and then produce the output document based on that. It’s simpler to work with, but more importantly it’s more resilient to exceptions. If there’s a problem loading the data from the database, the user will get a proper 500 response code.
What do I mean by “proper 500 response code?” If you start streaming a response to a client, and encounter an exception halfway through, there’s no way to change the status code; the user will see a 200 response that simply stops in the middle. Not only can this partial content be confusing, but it’s an invalid usage of the HTTP spec.
However, generating the xmlpipe output is a perfect example of the alternative. There are potentially a huge number of documents, and documents could easily be several hundred kilobytes. If we take a non-streaming approach, this can lead to huge memory usage and slow response times.
So how exactly do we create a streaming response? Yesod provides a helper function for this case: responseSourceDB
. This function takes two arguments: a content type, and a conduit Source
providing a stream of blaze-builder Builder
s. Yesod then handles all of the issues of grabbing a database connection from the connection pool, starting a transaction, and streaming the response to the user.
Now we know we want to create a stream of Builder
s from some XML content. Fortunately, the xml-conduit package provides this interface directly. xml-conduit
provides some high-level interfaces for dealing with documents as a whole, but in our case, we’re going to need to use the low-level Event
interface to ensure minimal memory impact. So the function we’re interested in is:
renderBuilder :: Monad m => RenderSettings -> Conduit Event m Builder
In plain English, that means renderBuilder
takes some settings (we’ll just use the defaults), and will then convert a stream of Event
s to a stream of Builder
s. This is looking pretty good, all we need now is a stream of Event
s.
Speaking of which, what should our XML document actually look like? It’s pretty simple, we have a sphinx:docset
root element, a sphinx:schema
element containing a single sphinx:field
(which defines the content field), and then a sphinx:document
for each document in our database. That last element will have an id
attribute and a child content
element. Below is an example of such a document:
<sphinx:docset xmlns:sphinx="http://sphinxsearch.com/">
<sphinx:schema>
<sphinx:field name="content"/>
</sphinx:schema>
<sphinx:document id="1">
<content>bar</content>
</sphinx:document>
<sphinx:document id="2">
<content>foo bar baz</content>
</sphinx:document>
</sphinx:docset>
If you’re not familiar with XML namespaces, the xmlns:
syntax and sphinx:
prefixes may look pretty weird. I don’t want to get into an XML tutorial in this chapter, so I’ll avoid an explanation. If you’re curious, feel free to look up the XML namespace specification.
Every document is going to start off with the same events (start the docset, start the schema, etc) and end with the same event (end the docset). We’ll start off by defining those:
toName :: Text -> X.Name
toName x = X.Name x (Just "http://sphinxsearch.com/") (Just "sphinx")
docset, schema, field, document, content :: X.Name
docset = toName "docset"
schema = toName "schema"
field = toName "field"
document = toName "document"
content = "content" -- no prefix
startEvents, endEvents :: [X.Event]
startEvents =
[ X.EventBeginDocument
, X.EventBeginElement docset []
, X.EventBeginElement schema []
, X.EventBeginElement field [("name", [X.ContentText "content"])]
, X.EventEndElement field
, X.EventEndElement schema
]
endEvents =
[ X.EventEndElement docset
]
Now that we have the shell of our document, we need to get the Event
s for each individual document. This is actually a fairly simple function:
entityToEvents :: Entity Doc -> [X.Event]
entityToEvents (Entity docid doc) =
[ X.EventBeginElement document [("id", [X.ContentText $ toPathPiece docid])]
, X.EventBeginElement content []
, X.EventContent $ X.ContentText $ unTextarea $ docContent doc
, X.EventEndElement content
, X.EventEndElement document
]
We start the document element with an id
attribute, start the content, insert the content, and then close both elements. We use toPathPiece
to convert a DocId
into a Text
value. Next, we need to be able to convert a stream of these entities into a stream of events. For this, we can use the built-in concatMap
function from Data.Conduit.List
: CL.concatMap entityToEvents
.
But what we really want is to stream those events directly from the database. For most of this book, we’ve used the selectList
function, but Persistent also provides the (more powerful) selectSource
function. So we end up with the function:
docSource :: Source (YesodDB Searcher) X.Event
docSource = selectSource [] [] $= CL.concatMap entityToEvents
The $= operator joins together a source and a conduit into a new source. Now that we have our Event
source, all we need to do is surround it with the document start and end events. With Source
‘s Monad
instance, this is a piece of cake:
fullDocSource :: Source (YesodDB Searcher) X.Event
fullDocSource = do
mapM_ yield startEvents
docSource
mapM_ yield endEvents
Now we need to tie it together in getXmlpipeR
. To do so, we’ll use the respondSourceDB
function mentioned earlier. The last trick we need to do is convert our stream of Event
s into a stream of Chunk Builder
s. Converting to a stream of Builder
s is achieved with renderBuilder
, and finally we’ll just wrap each Builder
in its own Chunk
:
getXmlpipeR :: Handler TypedContent
getXmlpipeR =
respondSourceDB "text/xml"
$ fullDocSource
$= renderBuilder def
$= CL.map Chunk
Full code
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
import Control.Applicative ((<$>), (<*>))
import Control.Monad (forM)
import Control.Monad.Logger (runStdoutLoggingT)
import Data.Conduit
import qualified Data.Conduit.List as CL
import Data.Maybe (catMaybes)
import Data.Monoid (mconcat)
import Data.Text (Text)
import qualified Data.Text as T
import Data.Text.Lazy.Encoding (decodeUtf8)
import qualified Data.XML.Types as X
import Database.Persist.Sqlite
import Text.Blaze.Html (preEscapedToHtml)
import qualified Text.Search.Sphinx as S
import qualified Text.Search.Sphinx.ExcerptConfiguration as E
import qualified Text.Search.Sphinx.Types as ST
import Text.XML.Stream.Render (def, renderBuilder)
import Yesod
share [mkPersist sqlSettings, mkMigrate "migrateAll"] [persistLowerCase|
Doc
title Text
content Textarea
|]
data Searcher = Searcher
{ connPool :: ConnectionPool
}
mkYesod "Searcher" [parseRoutes|
/ HomeR GET
/doc/#DocId DocR GET
/add-doc AddDocR POST
/search SearchR GET
/search/xmlpipe XmlpipeR GET
|]
instance Yesod Searcher
instance YesodPersist Searcher where
type YesodPersistBackend Searcher = SqlBackend
runDB action = do
Searcher pool <- getYesod
runSqlPool action pool
instance YesodPersistRunner Searcher where
getDBRunner = defaultGetDBRunner connPool
instance RenderMessage Searcher FormMessage where
renderMessage _ _ = defaultFormMessage
addDocForm :: Html -> MForm Handler (FormResult Doc, Widget)
addDocForm = renderTable $ Doc
<$> areq textField "Title" Nothing
<*> areq textareaField "Contents" Nothing
searchForm :: Html -> MForm Handler (FormResult Text, Widget)
searchForm = renderDivs $ areq (searchField True) "Query" Nothing
getHomeR :: Handler Html
getHomeR = do
docCount <- runDB $ count ([] :: [Filter Doc])
((_, docWidget), _) <- runFormPost addDocForm
((_, searchWidget), _) <- runFormGet searchForm
let docs = if docCount == 1
then "There is currently 1 document."
else "There are currently " ++ show docCount ++ " documents."
defaultLayout
[whamlet|
<p>Welcome to the search application. #{docs}
<form method=post action=@{AddDocR}>
<table>
^{docWidget}
<tr>
<td colspan=3>
<input type=submit value="Add document">
<form method=get action=@{SearchR}>
^{searchWidget}
<input type=submit value=Search>
|]
postAddDocR :: Handler Html
postAddDocR = do
((res, docWidget), _) <- runFormPost addDocForm
case res of
FormSuccess doc -> do
docid <- runDB $ insert doc
setMessage "Document added"
redirect $ DocR docid
_ -> defaultLayout
[whamlet|
<form method=post action=@{AddDocR}>
<table>
^{docWidget}
<tr>
<td colspan=3>
<input type=submit value="Add document">
|]
getDocR :: DocId -> Handler Html
getDocR docid = do
doc <- runDB $ get404 docid
defaultLayout
[whamlet|
<h1>#{docTitle doc}
<div .content>#{docContent doc}
|]
data Result = Result
{ resultId :: DocId
, resultTitle :: Text
, resultExcerpt :: Html
}
getResult :: DocId -> Doc -> Text -> IO Result
getResult docid doc qstring = do
excerpt' <- S.buildExcerpts
excerptConfig
[escape $ docContent doc]
"searcher"
qstring
let excerpt =
case excerpt' of
ST.Ok texts -> preEscapedToHtml $ mconcat texts
_ -> ""
return Result
{ resultId = docid
, resultTitle = docTitle doc
, resultExcerpt = excerpt
}
where
excerptConfig = E.altConfig { E.port = 9312 }
escape :: Textarea -> Text
escape =
T.concatMap escapeChar . unTextarea
where
escapeChar '<' = "<"
escapeChar '>' = ">"
escapeChar '&' = "&"
escapeChar c = T.singleton c
getResults :: Text -> Handler [Result]
getResults qstring = do
sphinxRes' <- liftIO $ S.query config "searcher" qstring
case sphinxRes' of
ST.Ok sphinxRes -> do
let docids = map (toSqlKey . ST.documentId) $ ST.matches sphinxRes
fmap catMaybes $ runDB $ forM docids $ \docid -> do
mdoc <- get docid
case mdoc of
Nothing -> return Nothing
Just doc -> liftIO $ Just <$> getResult docid doc qstring
_ -> error $ show sphinxRes'
where
config = S.defaultConfig
{ S.port = 9312
, S.mode = ST.Any
}
getSearchR :: Handler Html
getSearchR = do
((formRes, searchWidget), _) <- runFormGet searchForm
searchResults <-
case formRes of
FormSuccess qstring -> getResults qstring
_ -> return []
defaultLayout $ do
toWidget
[lucius|
.excerpt {
color: green; font-style: italic
}
.match {
background-color: yellow;
}
|]
[whamlet|
<form method=get action=@{SearchR}>
^{searchWidget}
<input type=submit value=Search>
$if not $ null searchResults
<h1>Results
$forall result <- searchResults
<div .result>
<a href=@{DocR $ resultId result}>#{resultTitle result}
<div .excerpt>#{resultExcerpt result}
|]
getXmlpipeR :: Handler TypedContent
getXmlpipeR =
respondSourceDB "text/xml"
$ fullDocSource
$= renderBuilder def
$= CL.map Chunk
entityToEvents :: (Entity Doc) -> [X.Event]
entityToEvents (Entity docid doc) =
[ X.EventBeginElement document [("id", [X.ContentText $ toPathPiece docid])]
, X.EventBeginElement content []
, X.EventContent $ X.ContentText $ unTextarea $ docContent doc
, X.EventEndElement content
, X.EventEndElement document
]
fullDocSource :: Source (YesodDB Searcher) X.Event
fullDocSource = do
mapM_ yield startEvents
docSource
mapM_ yield endEvents
docSource :: Source (YesodDB Searcher) X.Event
docSource = selectSource [] [] $= CL.concatMap entityToEvents
toName :: Text -> X.Name
toName x = X.Name x (Just "http://sphinxsearch.com/") (Just "sphinx")
docset, schema, field, document, content :: X.Name
docset = toName "docset"
schema = toName "schema"
field = toName "field"
document = toName "document"
content = "content" -- no prefix
startEvents, endEvents :: [X.Event]
startEvents =
[ X.EventBeginDocument
, X.EventBeginElement docset []
, X.EventBeginElement schema []
, X.EventBeginElement field [("name", [X.ContentText "content"])]
, X.EventEndElement field
, X.EventEndElement schema
]
endEvents =
[ X.EventEndElement docset
]
main :: IO ()
main = runStdoutLoggingT $ withSqlitePool "searcher.db3" 10 $ \pool -> liftIO $ do
runSqlPool (runMigration migrateAll) pool
warp 3000 $ Searcher pool