Toy weather data
Here is an example of how to easily manipulate a toy weather dataset usingxarray and other recommended Python libraries:
Shared setup:
- import numpy as np
- import pandas as pd
- import seaborn as sns # noqa, pandas aware plotting library
- import xarray as xr
- np.random.seed(123)
- times = pd.date_range('2000-01-01', '2001-12-31', name='time')
- annual_cycle = np.sin(2 * np.pi * (times.dayofyear.values / 365.25 - 0.28))
- base = 10 + 15 * annual_cycle.reshape(-1, 1)
- tmin_values = base + 3 * np.random.randn(annual_cycle.size, 3)
- tmax_values = base + 10 + 3 * np.random.randn(annual_cycle.size, 3)
- ds = xr.Dataset({'tmin': (('time', 'location'), tmin_values),
- 'tmax': (('time', 'location'), tmax_values)},
- {'time': times, 'location': ['IA', 'IN', 'IL']})
Examine a dataset with pandas and seaborn
- In [1]: ds
- Out[1]:
- <xarray.Dataset>
- Dimensions: (location: 3, time: 731)
- Coordinates:
- * time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2001-12-31
- * location (location) <U2 'IA' 'IN' 'IL'
- Data variables:
- tmin (time, location) float64 -8.037 -1.788 -3.932 ... -1.346 -4.544
- tmax (time, location) float64 12.98 3.31 6.779 ... 6.636 3.343 3.805
- In [2]: df = ds.to_dataframe()
- In [3]: df.head()
- Out[3]:
- tmin tmax
- location time
- IA 2000-01-01 -8.037369 12.980549
- 2000-01-02 -9.341157 0.447856
- 2000-01-03 -12.139719 5.322699
- 2000-01-04 -7.492914 1.889425
- 2000-01-05 -0.447129 0.791176
- In [4]: df.describe()
- Out[4]:
- tmin tmax
- count 2193.000000 2193.000000
- mean 9.975426 20.108232
- std 10.963228 11.010569
- min -13.395763 -3.506234
- 25% -0.040347 9.853905
- 50% 10.060403 19.967409
- 75% 20.083590 30.045588
- max 33.456060 43.271148
- In [5]: ds.mean(dim='location').to_dataframe().plot()
- Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x7f34147b3a20>
- In [6]: sns.pairplot(df.reset_index(), vars=ds.data_vars)
- Out[6]: <seaborn.axisgrid.PairGrid at 0x7f3424685b38>
Probability of freeze by calendar month
- In [7]: freeze = (ds['tmin'] <= 0).groupby('time.month').mean('time')
- In [8]: freeze
- Out[8]:
- <xarray.DataArray 'tmin' (month: 12, location: 3)>
- array([[0.951613, 0.887097, 0.935484],
- [0.842105, 0.719298, 0.77193 ],
- [0.241935, 0.129032, 0.16129 ],
- [0. , 0. , 0. ],
- [0. , 0. , 0. ],
- [0. , 0. , 0. ],
- [0. , 0. , 0. ],
- [0. , 0. , 0. ],
- [0. , 0. , 0. ],
- [0. , 0.016129, 0. ],
- [0.333333, 0.35 , 0.233333],
- [0.935484, 0.854839, 0.822581]])
- Coordinates:
- * location (location) <U2 'IA' 'IN' 'IL'
- * month (month) int64 1 2 3 4 5 6 7 8 9 10 11 12
- In [9]: freeze.to_pandas().plot()
- Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x7f34259762e8>
Monthly averaging
- In [10]: monthly_avg = ds.resample(time='1MS').mean()
- In [11]: monthly_avg.sel(location='IA').to_dataframe().plot(style='s-')
- Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7f34258bae80>
Note that MS
here refers to Month-Start; M
labels Month-End (the lastday of the month).
Calculate monthly anomalies
In climatology, “anomalies” refer to the difference between observations andtypical weather for a particular season. Unlike observations, anomalies shouldnot show any seasonal cycle.
- In [12]: climatology = ds.groupby('time.month').mean('time')
- In [13]: anomalies = ds.groupby('time.month') - climatology
- In [14]: anomalies.mean('location').to_dataframe()[['tmin', 'tmax']].plot()
- Out[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7f342581f748>
Calculate standardized monthly anomalies
You can create standardized anomalies where the difference between theobservations and the climatological monthly mean isdivided by the climatological standard deviation.
- In [15]: climatology_mean = ds.groupby('time.month').mean('time')
- In [16]: climatology_std = ds.groupby('time.month').std('time')
- In [17]: stand_anomalies = xr.apply_ufunc(
- ....: lambda x, m, s: (x - m) / s,
- ....: ds.groupby('time.month'),
- ....: climatology_mean, climatology_std)
- ....:
- In [18]: stand_anomalies.mean('location').to_dataframe()[['tmin', 'tmax']].plot()
- Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3425767cc0>
Fill missing values with climatology
The fillna()
method on grouped objects lets you easilyfill missing values by group:
- # throw away the first half of every month
- In [19]: some_missing = ds.tmin.sel(time=ds['time.day'] > 15).reindex_like(ds)
- In [20]: filled = some_missing.groupby('time.month').fillna(climatology.tmin)
- In [21]: both = xr.Dataset({'some_missing': some_missing, 'filled': filled})
- In [22]: both
- Out[22]:
- <xarray.Dataset>
- Dimensions: (location: 3, time: 731)
- Coordinates:
- * time (time) datetime64[ns] 2000-01-01 2000-01-02 ... 2001-12-31
- * location (location) object 'IA' 'IN' 'IL'
- month (time) int64 1 1 1 1 1 1 1 1 1 ... 12 12 12 12 12 12 12 12 12
- Data variables:
- some_missing (time, location) float64 nan nan nan ... 2.063 -1.346 -4.544
- filled (time, location) float64 -5.163 -4.216 ... -1.346 -4.544
- In [23]: df = both.sel(time='2000').mean('location').reset_coords(drop=True).to_dataframe()
- In [24]: df[['filled', 'some_missing']].plot()
- Out[24]: <matplotlib.axes._subplots.AxesSubplot at 0x7f3425752c18>