题目描述(简单难度)

9. Palindrome Number - 图1

判断是不是回文数,负数不是回文数。

解法一

把 int 转成字符串,然后判断是否是回文串做就可以了,缺点是需要额外的空间存储字符串,当然题目也告诉了不能这样,所以 pass 。

解法二

第 7 道题我们写了倒置 int 的算法,这里当然可以用到了,只需要判断倒置前后相不相等就可以了。

记不记得,当倒置后的数字超出 int 的范围时,我们返回的是 0 ,那么它一定不等于原数,此时一定返回 false 了,这正不正确呢?

我们只需证明,如果倒置后超出 int 的范围,那么它一定不是回文数字就好了。

反证法,我们假设存在这么一个数,倒置后是超出 int 范围的,并且它是回文数字。

int 最大为 2147483647 ,

9. Palindrome Number - 图2

让我们来讨论这个数可能是多少。

有没有可能是最高位大于 2 导致的溢出,比如最高位是 3 ,因为是回文串,所以最低位是 3 ,这就将导致转置前最高位也会是 3 ,所以不可能是这种情况。

有没有可能是第 2 高位大于 1 导致的溢出,此时保持最高位不变,假如第 2 高位是 2,因为是回文串,所以个位是 2,十位是 2 ,同样的会导致倒置前超出了 int 的最大值,所以也不可能是这种情况。

同理,第 3 高位,第 4,第 5,直线左边的都是上述的情况,所以不可能是前边的位数过大。

为了保证这个数是溢出的,前边 5 位必须固定不变了,因为它是回文串,所以直线后的灰色数字就一定是 4 ,而此时不管后边的数字取多少,都不可能是溢出的了。

综上,不存在这样一个数,所以可以安心的写代码了。

  1. public int reverse(int x) {
  2. int rev = 0;
  3. while (x != 0) {
  4. int pop = x % 10;
  5. x /= 10;
  6. if (rev > Integer.MAX_VALUE / 10)
  7. return 0;
  8. if (rev < Integer.MIN_VALUE / 10)
  9. return 0;
  10. rev = rev * 10 + pop;
  11. }
  12. return rev;
  13. }
  14. public boolean isPalindrome(int x) {
  15. if (x < 0) {
  16. return false;
  17. }
  18. int rev = reverse(x);
  19. return x == rev;
  20. }

时间复杂度:和求转置一样,x 有多少位,就循环多少次,所以是 O(log(x)) 。

空间复杂度:O(1)。

解法三

其实,我们只需要将右半部分倒置然后和左半部比较就可以了。比如 1221 ,把 21 转置和 12 比较就行了。

  1. public boolean isPalindrome(int x) {
  2. if (x < 0) {
  3. return false;
  4. }
  5. int digit = (int) (Math.log(x) / Math.log(10) + 1); //总位数
  6. int revert = 0;
  7. int pop = 0;
  8. //倒置右半部分
  9. for (int i = 0; i < digit / 2; i++) {
  10. pop = x % 10;
  11. revert = revert * 10 + pop;
  12. x /= 10;
  13. }
  14. if (digit % 2 == 0 && x == revert) {
  15. return true;
  16. }
  17. //奇数情况 x 除以 10 去除 1 位
  18. if (digit % 2 != 0 && x / 10 == revert) {
  19. return true;
  20. }
  21. return false;
  22. }

时间复杂度:循环 x 的总位数的一半次,所以时间复杂度依旧是 O(log(x))。

空间复杂度:O(1),常数个变量。

总结

这几天都比较简单,加油加油加油!。

windliang wechat

添加好友一起进步~

如果觉得有帮助的话,可以点击 这里 给一个 star 哦 ^^

如果想系统的学习数据结构和算法,强烈推荐一个我之前学过的课程,可以点击 这里 查看详情