TypeScript 的类型系统

本章是 TypeScript 类型系统的总体介绍。

TypeScript 继承了 JavaScript 的类型,在这个基础上,定义了一套自己的类型系统。

基本类型

概述

JavaScript 语言(注意,不是 TypeScript)将值分成8种类型。

  • boolean
  • string
  • number
  • bigint
  • symbol
  • object
  • undefined
  • null

TypeScript 继承了 JavaScript 的类型设计,以上8种类型可以看作 TypeScript 的基本类型。

注意,上面所有类型的名称都是小写字母,首字母大写的NumberStringBoolean等在 JavaScript 语言中都是内置对象,而不是类型名称。

另外,undefined 和 null 既可以作为值,也可以作为类型,取决于在哪里使用它们。

这8种基本类型是 TypeScript 类型系统的基础,复杂类型由它们组合而成。

以下是它们的简单介绍。

boolean 类型

boolean类型只包含truefalse两个布尔值。

  1. const x:boolean = true;
  2. const y:boolean = false;

上面示例中,变量xy就属于 boolean 类型。

string 类型

string类型包含所有字符串。

  1. const x:string = 'hello';
  2. const y:string = `${x} world`;

上面示例中,普通字符串和模板字符串都属于 string 类型。

number 类型

number类型包含所有整数和浮点数。

  1. const x:number = 123;
  2. const y:number = 3.14;
  3. const z:number = 0xffff;

上面示例中,整数、浮点数和非十进制数都属于 number 类型。

bigint 类型

bigint 类型包含所有的大整数。

  1. const x:bigint = 123n;
  2. const y:bigint = 0xffffn;

上面示例中,变量xy就属于 bigint 类型。

bigint 与 number 类型不兼容。

  1. const x:bigint = 123; // 报错
  2. const y:bigint = 3.14; // 报错

上面示例中,bigint类型赋值为整数和小数,都会报错。

注意,bigint 类型是 ES2020 标准引入的。如果使用这个类型,TypeScript 编译的目标 JavaScript 版本不能低于 ES2020(即编译参数target不低于es2020)。

symbol 类型

symbol 类型包含所有的 Symbol 值。

  1. const x:symbol = Symbol();

上面示例中,Symbol()函数的返回值就是 symbol 类型。

symbol 类型的详细介绍,参见《Symbol》一章。

object 类型

根据 JavaScript 的设计,object 类型包含了所有对象、数组和函数。

  1. const x:object = { foo: 123 };
  2. const y:object = [1, 2, 3];
  3. const z:object = (n:number) => n + 1;

上面示例中,对象、数组、函数都属于 object 类型。

undefined 类型,null 类型

undefined 和 null 是两种独立类型,它们各自都只有一个值。

undefined 类型只包含一个值undefined,表示未定义(即还未给出定义,以后可能会有定义)。

  1. let x:undefined = undefined;

上面示例中,变量x就属于 undefined 类型。两个undefined里面,第一个是类型,第二个是值。

null 类型也只包含一个值null,表示为空(即此处没有值)。

  1. const x:null = null;

上面示例中,变量x就属于 null 类型。

注意,如果没有声明类型的变量,被赋值为undefinednull,它们的类型会被推断为any

  1. let a = undefined; // any
  2. const b = undefined; // any
  3. let c = null; // any
  4. const d = null; // any

如果希望避免这种情况,则需要打开编译选项strictNullChecks

  1. // 打开编译设置 strictNullChecks
  2. let a = undefined; // undefined
  3. const b = undefined; // undefined
  4. let c = null; // null
  5. const d = null; // null

上面示例中,打开编译设置strictNullChecks以后,赋值为undefined的变量会被推断为undefined类型,赋值为null的变量会被推断为null类型。

包装对象类型

包装对象的概念

JavaScript 的8种类型之中,undefinednull其实是两个特殊值,object属于复合类型,剩下的五种属于原始类型(primitive value),代表最基本的、不可再分的值。

  • boolean
  • string
  • number
  • bigint
  • symbol

上面这五种原始类型的值,都有对应的包装对象(wrapper object)。所谓“包装对象”,指的是这些值在需要时,会自动产生的对象。

  1. 'hello'.charAt(1) // 'e'

上面示例中,字符串hello执行了charAt()方法。但是,在 JavaScript 语言中,只有对象才有方法,原始类型的值本身没有方法。这行代码之所以可以运行,就是因为在调用方法时,字符串会自动转为包装对象,charAt()方法其实是定义在包装对象上。

这样的设计大大方便了字符串处理,省去了将原始类型的值手动转成对象实例的麻烦。

五种包装对象之中,symbol 类型和 bigint 类型无法直接获取它们的包装对象(即Symbol()BigInt()不能作为构造函数使用),但是剩下三种可以。

  • Boolean()
  • String()
  • Number()

以上三个构造函数,执行后可以直接获取某个原始类型值的包装对象。

  1. const s = new String('hello');
  2. typeof s // 'object'
  3. s.charAt(1) // 'e'

上面示例中,s就是字符串hello的包装对象,typeof运算符返回object,不是string,但是本质上它还是字符串,可以使用所有的字符串方法。

注意,String()只有当作构造函数使用时(即带有new命令调用),才会返回包装对象。如果当作普通函数使用(不带有new命令),返回就是一个普通字符串。其他两个构造函数Number()Boolean()也是如此。

包装对象类型与字面量类型

由于包装对象的存在,导致每一个原始类型的值都有包装对象和字面量两种情况。

  1. 'hello' // 字面量
  2. new String('hello') // 包装对象

上面示例中,第一行是字面量,第二行是包装对象,它们都是字符串。

为了区分这两种情况,TypeScript 对五种原始类型分别提供了大写和小写两种类型。

  • Boolean 和 boolean
  • String 和 string
  • Number 和 number
  • BigInt 和 bigint
  • Symbol 和 symbol

其中,大写类型同时包含包装对象和字面量两种情况,小写类型只包含字面量,不包含包装对象。

  1. const s1:String = 'hello'; // 正确
  2. const s2:String = new String('hello'); // 正确
  3. const s3:string = 'hello'; // 正确
  4. const s4:string = new String('hello'); // 报错

上面示例中,String类型可以赋值为字符串的字面量,也可以赋值为包装对象。但是,string类型只能赋值为字面量,赋值为包装对象就会报错。

建议只使用小写类型,不使用大写类型。因为绝大部分使用原始类型的场合,都是使用字面量,不使用包装对象。而且,TypeScript 把很多内置方法的参数,定义成小写类型,使用大写类型会报错。

  1. const n1:number = 1;
  2. const n2:Number = 1;
  3. Math.abs(n1) // 1
  4. Math.abs(n2) // 报错

上面示例中,Math.abs()方法的参数类型被定义成小写的number,传入大写的Number类型就会报错。

上一小节说过,Symbol()BigInt()这两个函数不能当作构造函数使用,所以没有办法直接获得 symbol 类型和 bigint 类型的包装对象,因此SymbolBigInt这两个类型虽然存在,但是完全没有使用的理由。

Object 类型与 object 类型

TypeScript 的对象类型也有大写Object和小写object两种。

Object 类型

大写的Object类型代表 JavaScript 语言里面的广义对象。所有可以转成对象的值,都是Object类型,这囊括了几乎所有的值。

  1. let obj:Object;
  2. obj = true;
  3. obj = 'hi';
  4. obj = 1;
  5. obj = { foo: 123 };
  6. obj = [1, 2];
  7. obj = (a:number) => a + 1;

上面示例中,原始类型值、对象、数组、函数都是合法的Object类型。

事实上,除了undefinednull这两个值不能转为对象,其他任何值都可以赋值给Object类型。

  1. let obj:Object;
  2. obj = undefined; // 报错
  3. obj = null; // 报错

上面示例中,undefinednull赋值给Object类型,就会报错。

另外,空对象{}Object类型的简写形式,所以使用Object时常常用空对象代替。

  1. let obj:{};
  2. obj = true;
  3. obj = 'hi';
  4. obj = 1;
  5. obj = { foo: 123 };
  6. obj = [1, 2];
  7. obj = (a:number) => a + 1;

上面示例中,变量obj的类型是空对象{},就代表Object类型。

显然,无所不包的Object类型既不符合直觉,也不方便使用。

object 类型

小写的object类型代表 JavaScript 里面的狭义对象,即可以用字面量表示的对象,只包含对象、数组和函数,不包括原始类型的值。

  1. let obj:object;
  2. obj = { foo: 123 };
  3. obj = [1, 2];
  4. obj = (a:number) => a + 1;
  5. obj = true; // 报错
  6. obj = 'hi'; // 报错
  7. obj = 1; // 报错

上面示例中,object类型不包含原始类型值,只包含对象、数组和函数。

大多数时候,我们使用对象类型,只希望包含真正的对象,不希望包含原始类型。所以,建议总是使用小写类型object,不使用大写类型Object

注意,无论是大写的Object类型,还是小写的object类型,都只包含 JavaScript 内置对象原生的属性和方法,用户自定义的属性和方法都不存在于这两个类型之中。

  1. const o1:Object = { foo: 0 };
  2. const o2:object = { foo: 0 };
  3. o1.toString() // 正确
  4. o1.foo // 报错
  5. o2.toString() // 正确
  6. o2.foo // 报错

上面示例中,toString()是对象的原生方法,可以正确访问。foo是自定义属性,访问就会报错。如何描述对象的自定义属性,详见《对象类型》一章。

undefined 和 null 的特殊性

undefinednull既是值,又是类型。

作为值,它们有一个特殊的地方:任何其他类型的变量都可以赋值为undefinednull

  1. let age:number = 24;
  2. age = null; // 正确
  3. age = undefined; // 正确

上面代码中,变量age的类型是number,但是赋值为nullundefined并不报错。

这并不是因为undefinednull包含在number类型里面,而是故意这样设计,任何类型的变量都可以赋值为undefinednull,以便跟 JavaScript 的行为保持一致。

JavaScript 的行为是,变量如果等于undefined就表示还没有赋值,如果等于null就表示值为空。所以,TypeScript 就允许了任何类型的变量都可以赋值为这两个值。

但是有时候,这并不是开发者想要的行为,也不利于发挥类型系统的优势。

  1. const obj:object = undefined;
  2. obj.toString() // 编译不报错,运行就报错

上面示例中,变量obj等于undefined,编译不会报错。但是,实际执行时,调用obj.toString()就报错了,因为undefined不是对象,没有这个方法。

为了避免这种情况,及早发现错误,TypeScript 提供了一个编译选项strictNullChecks。只要打开这个选项,undefinednull就不能赋值给其他类型的变量(除了any类型和unknown类型)。

下面是 tsc 命令打开这个编译选项的例子。

  1. // tsc --strictNullChecks app.ts
  2. let age:number = 24;
  3. age = null; // 报错
  4. age = undefined; // 报错

上面示例中,打开--strictNullChecks以后,number类型的变量age就不能赋值为undefinednull

这个选项在配置文件tsconfig.json的写法如下。

  1. {
  2. "compilerOptions": {
  3. "strictNullChecks": true
  4. // ...
  5. }
  6. }

打开strictNullChecks以后,undefinednull这两种值也不能互相赋值了。

  1. // 打开 strictNullChecks
  2. let x:undefined = null; // 报错
  3. let y:null = undefined; // 报错

上面示例中,undefined类型的变量赋值为null,或者null类型的变量赋值为undefind,都会报错。

总之,打开strictNullChecks以后,undefinednull只能赋值给自身,或者any类型和unknown类型的变量。

  1. let x:any = undefined;
  2. let y:unknown = null;

值类型

TypeScript 规定,单个值也是一种类型,称为“值类型”。

  1. let x:'hello';
  2. x = 'hello'; // 正确
  3. x = 'world'; // 报错

上面示例中,变量x的类型是字符串hello,导致它只能赋值为这个字符串,赋值为其他字符串就会报错。

TypeScript 推断类型时,遇到const命令声明的变量,如果代码里面没有注明类型,就会推断该变量是值类型。

  1. // x 的类型是 "https"
  2. const x = 'https';
  3. // y 的类型是 string
  4. const y:string = 'https';

上面示例中,变量xconst命令声明的,TypeScript 就会推断它的类型是值https,而不是string类型。

这样推断是合理的,因为const命令声明的变量,一旦声明就不能改变,相当于常量。值类型就意味着不能赋为其他值。

注意,const命令声明的变量,如果赋值为对象,并不会推断为值类型。

  1. // x 的类型是 { foo: number }
  2. const x = { foo: 1 };

上面示例中,变量x没有被推断为值类型,而是推断属性foo的类型是number。这是因为 JavaScript 里面,const变量赋值为对象时,属性值是可以改变的。

值类型可能会出现一些很奇怪的报错。

  1. const x:5 = 4 + 1; // 报错

上面示例中,等号左侧的类型是数值5,等号右侧4 + 1的类型,TypeScript 推测为number。由于5number的子类型,number5的父类型,父类型不能赋值给子类型,所以报错了(详见本章后文)。

但是,反过来是可以的,子类型可以赋值给父类型。

  1. let x:5 = 5;
  2. let y:number = 4 + 1;
  3. x = y; // 报错
  4. y = x; // 正确

上面示例中,变量x属于子类型,变量y属于父类型。y不能赋值为子类型x,但是反过来是可以的。

如果一定要让子类型可以赋值为父类型的值,就要用到类型断言(详见《类型断言》一章)。

  1. const x:5 = (4 + 1) as 5; // 正确

上面示例中,在4 + 1后面加上as 5,就是告诉编译器,可以把4 + 1的类型视为值类型5,这样就不会报错了。

只包含单个值的值类型,用处不大。实际开发中,往往将多个值结合,作为联合类型使用。

联合类型

联合类型(union types)指的是多个类型组成的一个新类型,使用符号|表示。

联合类型A|B表示,任何一个类型只要属于AB,就属于联合类型A|B

  1. let x:string|number;
  2. x = 123; // 正确
  3. x = 'abc'; // 正确

上面示例中,变量x就是联合类型string|number,表示它的值既可以是字符串,也可以是数值。

联合类型可以与值类型相结合,表示一个变量的值有若干种可能。

  1. let setting:true|false;
  2. let gender:'male'|'female';
  3. let rainbowColor:'赤'|'橙'|'黄'|'绿'|'青'|'蓝'|'紫';

上面的示例都是由值类型组成的联合类型,非常清晰地表达了变量的取值范围。其中,true|false其实就是布尔类型boolean

前面提到,打开编译选项strictNullChecks后,其他类型的变量不能赋值为undefinednull。这时,如果某个变量确实可能包含空值,就可以采用联合类型的写法。

  1. let name:string|null;
  2. name = 'John';
  3. name = null;

上面示例中,变量name的值可以是字符串,也可以是null

联合类型的第一个成员前面,也可以加上竖杠|,这样便于多行书写。

  1. let x:
  2. | 'one'
  3. | 'two'
  4. | 'three'
  5. | 'four';

上面示例中,联合类型的第一个成员one前面,加上了竖杠。

如果一个变量有多种类型,读取该变量时,往往需要进行“类型缩小”(type narrowing),区分该值到底属于哪一种类型,然后再进一步处理。

  1. function printId(
  2. id:number|string
  3. ) {
  4. console.log(id.toUpperCase()); // 报错
  5. }

上面示例中,参数变量id可能是数值,也可能是字符串,这时直接对这个变量调用toUpperCase()方法会报错,因为这个方法只存在于字符串,不存在于数值。

解决方法就是对参数id做一下类型缩小,确定它的类型以后再进行处理。

  1. function printId(
  2. id:number|string
  3. ) {
  4. if (typeof id === 'string') {
  5. console.log(id.toUpperCase());
  6. } else {
  7. console.log(id);
  8. }
  9. }

上面示例中,函数体内部会判断一下变量id的类型,如果是字符串,就对其执行toUpperCase()方法。

“类型缩小”是 TypeScript 处理联合类型的标准方法,凡是遇到可能为多种类型的场合,都需要先缩小类型,再进行处理。实际上,联合类型本身可以看成是一种“类型放大”(type widening),处理时就需要“类型缩小”(type narrowing)。

下面是“类型缩小”的另一个例子。

  1. function getPort(
  2. scheme: 'http'|'https'
  3. ) {
  4. switch (scheme) {
  5. case 'http':
  6. return 80;
  7. case 'https':
  8. return 443;
  9. }
  10. }

上面示例中,函数体内部对参数变量scheme进行类型缩小,根据不同的值类型,返回不同的结果。

交叉类型

交叉类型(intersection types)指的多个类型组成的一个新类型,使用符号&表示。

交叉类型A&B表示,任何一个类型必须同时属于AB,才属于交叉类型A&B,即交叉类型同时满足AB的特征。

  1. let x:number&string;

上面示例中,变量x同时是数值和字符串,这当然是不可能的,所以 TypeScript 会认为x的类型实际是never

交叉类型的主要用途是表示对象的合成。

  1. let obj:
  2. { foo: string } &
  3. { bar: string };
  4. obj = {
  5. foo: 'hello',
  6. bar: 'world'
  7. };

上面示例中,变量obj同时具有属性foo和属性bar

交叉类型常常用来为对象类型添加新属性。

  1. type A = { foo: number };
  2. type B = A & { bar: number };

上面示例中,类型B是一个交叉类型,用来在A的基础上增加了属性bar

type 命令

type命令用来定义一个类型的别名。

  1. type Age = number;
  2. let age:Age = 55;

上面示例中,type命令为number类型定义了一个别名Age。这样就能像使用number一样,使用Age作为类型。

别名可以让类型的名字变得更有意义,也能增加代码的可读性,还可以使复杂类型用起来更方便,便于以后修改变量的类型。

别名不允许重名。

  1. type Color = 'red';
  2. type Color = 'blue'; // 报错

上面示例中,同一个别名Color声明了两次,就报错了。

别名的作用域是块级作用域。这意味着,代码块内部定义的别名,影响不到外部。

  1. type Color = 'red';
  2. if (Math.random() < 0.5) {
  3. type Color = 'blue';
  4. }

上面示例中,if代码块内部的类型别名Color,跟外部的Color是不一样的。

别名支持使用表达式,也可以在定义一个别名时,使用另一个别名,即别名允许嵌套。

  1. type World = "world";
  2. type Greeting = `hello ${World}`;

上面示例中,别名Greeting使用了模板字符串,读取另一个别名World

type命令属于类型相关的代码,编译成 JavaScript 的时候,会被全部删除。

typeof 运算符

JavaScript 语言中,typeof 运算符是一个一元运算符,返回一个字符串,代表操作数的类型。

  1. typeof 'foo'; // 'string'

上面示例中,typeof运算符返回字符串foo的类型是string

注意,这时 typeof 的操作数是一个值。

JavaScript 里面,typeof运算符只可能返回八种结果,而且都是字符串。

  1. typeof undefined; // "undefined"
  2. typeof true; // "boolean"
  3. typeof 1337; // "number"
  4. typeof "foo"; // "string"
  5. typeof {}; // "object"
  6. typeof parseInt; // "function"
  7. typeof Symbol(); // "symbol"
  8. typeof 127n // "bigint"

上面示例是typeof运算符在 JavaScript 语言里面,可能返回的八种结果。

TypeScript 将typeof运算符移植到了类型运算,它的操作数依然是一个值,但是返回的不是字符串,而是该值的 TypeScript 类型。

  1. const a = { x: 0 };
  2. type T0 = typeof a; // { x: number }
  3. type T1 = typeof a.x; // number

上面示例中,typeof a表示返回变量a的 TypeScript 类型({ x: number })。同理,typeof a.x返回的是属性x的类型(number)。

这种用法的typeof返回的是 TypeScript 类型,所以只能用在类型运算之中(即跟类型相关的代码之中),不能用在值运算。

也就是说,同一段代码可能存在两种typeof运算符,一种用在值相关的 JavaScript 代码部分,另一种用在类型相关的 TypeScript 代码部分。

  1. let a = 1;
  2. let b:typeof a;
  3. if (typeof a === 'number') {
  4. b = a;
  5. }

上面示例中,用到了两个typeof,第一个是类型运算,第二个是值运算。它们是不一样的,不要混淆。

JavaScript 的 typeof 遵守 JavaScript 规则,TypeScript 的 typeof 遵守 TypeScript 规则。它们的一个重要区别在于,编译后,前者会保留,后者会被全部删除。

上例的代码编译结果如下。

  1. let a = 1;
  2. let b;
  3. if (typeof a === 'number') {
  4. b = a;
  5. }

上面示例中,只保留了原始代码的第二个 typeof,删除了第一个 typeof。

由于编译时不会进行 JavaScript 的值运算,所以TypeScript 规定,typeof 的参数只能是标识符,不能是需要运算的表达式。

  1. type T = typeof Date(); // 报错

上面示例会报错,原因是 typeof 的参数不能是一个值的运算式,而Date()需要运算才知道结果。

另外,typeof命令的参数不能是类型。

  1. type Age = number;
  2. type MyAge = typeof Age; // 报错

上面示例中,Age是一个类型别名,用作typeof命令的参数就会报错。

typeof 是一个很重要的 TypeScript 运算符,有些场合不知道某个变量foo的类型,这时使用typeof foo就可以获得它的类型。

块级类型声明

TypeScript 支持块级类型声明,即类型可以声明在代码块(用大括号表示)里面,并且只在当前代码块有效。

  1. if (true) {
  2. type T = number;
  3. let v:T = 5;
  4. } else {
  5. type T = string;
  6. let v:T = 'hello';
  7. }

上面示例中,存在两个代码块,其中分别有一个类型T的声明。这两个声明都只在自己的代码块内部有效,在代码块外部无效。

类型的兼容

TypeScript 的类型存在兼容关系,某些类型可以兼容其他类型。

  1. type T = number|string;
  2. let a:number = 1;
  3. let b:T = a;

上面示例中,变量ab的类型是不一样的,但是变量a赋值给变量b并不会报错。这时,我们就认为,b的类型兼容a的类型。

TypeScript 为这种情况定义了一个专门术语。如果类型A的值可以赋值给类型B,那么类型A就称为类型B的子类型(subtype)。在上例中,类型number就是类型number|string的子类型。

TypeScript 的一个规则是,凡是可以使用父类型的地方,都可以使用子类型,但是反过来不行。

  1. let a:'hi' = 'hi';
  2. let b:string = 'hello';
  3. b = a; // 正确
  4. a = b; // 报错

上面示例中,histring的子类型,stringhi的父类型。所以,变量a可以赋值给变量b,但是反过来就会报错。

之所以有这样的规则,是因为子类型继承了父类型的所有特征,所以可以用在父类型的场合。但是,子类型还可能有一些父类型没有的特征,所以父类型不能用在子类型的场合。