参数优化
vnpy提供2种参数优化的解决方案:穷举算法、遗传算法
穷举算法
穷举算法原理:
- 输入需要优化的参数名、优化区间、优化步进,以及优化目标。
- def add_parameter(
- self, name: str, start: float, end: float = None, step: float = None
- ):
- """"""
- if not end and not step:
- self.params[name] = [start]
- return
- if start >= end:
- print("参数优化起始点必须小于终止点")
- return
- if step <= 0:
- print("参数优化步进必须大于0")
- return
- value = start
- value_list = []
- while value <= end:
- value_list.append(value)
- value += step
- self.params[name] = value_list
- def set_target(self, target_name: str):
- """"""
- self.target_name = target_name
- 形成全局参数组合, 数据结构为[{key: value, key: value}, {key: value, key: value}]。
- def generate_setting(self):
- """"""
- keys = self.params.keys()
- values = self.params.values()
- products = list(product(*values))
- settings = []
- for p in products:
- setting = dict(zip(keys, p))
- settings.append(setting)
- return settings
- 遍历全局中的每一个参数组合:遍历的过程即运行一次策略回测,并且返回优化目标数值;然后根据目标数值排序,输出优化结果。
- def run_optimization(self, optimization_setting: OptimizationSetting, output=True):
- """"""
- # Get optimization setting and target
- settings = optimization_setting.generate_setting()
- target_name = optimization_setting.target_name
- if not settings:
- self.output("优化参数组合为空,请检查")
- return
- if not target_name:
- self.output("优化目标未设置,请检查")
- return
- # Use multiprocessing pool for running backtesting with different setting
- pool = multiprocessing.Pool(multiprocessing.cpu_count())
- results = []
- for setting in settings:
- result = (pool.apply_async(optimize, (
- target_name,
- self.strategy_class,
- setting,
- self.vt_symbol,
- self.interval,
- self.start,
- self.rate,
- self.slippage,
- self.size,
- self.pricetick,
- self.capital,
- self.end,
- self.mode
- )))
- results.append(result)
- pool.close()
- pool.join()
- # Sort results and output
- result_values = [result.get() for result in results]
- result_values.sort(reverse=True, key=lambda result: result[1])
- if output:
- for value in result_values:
- msg = f"参数:{value[0]}, 目标:{value[1]}"
- self.output(msg)
- return result_values
注意:可以使用multiprocessing库来创建多进程实现并行优化。例如:若用户计算机是2核,优化时间为原来1/2;若计算机是10核,优化时间为原来1/10。
穷举算法操作:
点击“参数优化”按钮,会弹出“优化参数配置”窗口,用于设置优化目标(如最大化夏普比率、最大化收益回撤比)和设置需要优化的参数以及优化区间,如图。
设置好需要优化的参数后,点击“优化参数配置”窗口下方的“确认”按钮开始进行调用CPU多核进行多进程并行优化,同时日志会输出相关信息。
点击“优化结果”按钮可以看出优化结果,如图的参数组合是基于目标数值(夏普比率)由高到低的顺序排列的。
遗传算法
遗传算法原理:
- 输入需要优化的参数名、优化区间、优化步进,以及优化目标;
- 形成全局参数组合,该组合的数据结构是列表内镶嵌元组,即[[(key, value), (key, value)] , [(key, value), (key,value)]],与穷举算法的全局参数组合的数据结构不同。这样做的目的是有利于参数间进行交叉互换和变异。
- def generate_setting_ga(self):
- """"""
- settings_ga = []
- settings = self.generate_setting()
- for d in settings:
- param = [tuple(i) for i in d.items()]
- settings_ga.append(param)
- return settings_ga
- 形成个体:调用random()函数随机从全局参数组合中获取参数。
- def generate_parameter():
- """"""
- return random.choice(settings)
- 定义个体变异规则: 即发生变异时,旧的个体完全被新的个体替代。
- def mutate_individual(individual, indpb):
- """"""
- size = len(individual)
- paramlist = generate_parameter()
- for i in range(size):
- if random.random() < indpb:
- individual[i] = paramlist[i]
- return individual,
- 定义评估函数:入参的是个体,即[(key, value), (key, value)]形式的参数组合,然后通过dict()转化成setting字典,然后运行回测,输出目标优化数值,如夏普比率、收益回撤比。(注意,修饰器@lru_cache作用是缓存计算结果,避免遇到相同的输入重复计算,大大降低运行遗传算法的时间)
- @lru_cache(maxsize=1000000)def _ga_optimize(parameter_values: tuple): """""" setting = dict(parameter_values)
result = optimize(
ga_target_name,
ga_strategy_class,
setting,
ga_vt_symbol,
ga_interval,
ga_start,
ga_rate,
ga_slippage,
ga_size,
ga_pricetick,
ga_capital,
ga_end,
ga_mode
)
return (result[1],)
def ga_optimize(parameter_values: list): """""" return _ga_optimize(tuple(parameter_values))
- 运行遗传算法:调用deap库的算法引擎来运行遗传算法,其具体流程如下。1)先定义优化方向,如夏普比率最大化;2)然后随机从全局参数组合获取个体,并形成族群;3)对族群内所有个体进行评估(即运行回测),并且剔除表现不好个体;4)剩下的个体会进行交叉或者变异,通过评估和筛选后形成新的族群;(到此为止是完整的一次种群迭代过程);5)多次迭代后,种群内差异性减少,整体适应性提高,最终输出建议结果。该结果为帕累托解集,可以是1个或者多个参数组合。注意:由于用到了@lru_cache, 迭代中后期的速度回提高非常多,因为很多重复的输入都避免了再次的回测,直接在内存中查询并且返回计算结果。
- from deap import creator, base, tools, algorithms
- creator.create("FitnessMax", base.Fitness, weights=(1.0,))
- creator.create("Individual", list, fitness=creator.FitnessMax)
- ......
- # Set up genetic algorithem
- toolbox = base.Toolbox()
- toolbox.register("individual", tools.initIterate, creator.Individual, generate_parameter)
- toolbox.register("population", tools.initRepeat, list, toolbox.individual)
- toolbox.register("mate", tools.cxTwoPoint)
- toolbox.register("mutate", mutate_individual, indpb=1)
- toolbox.register("evaluate", ga_optimize)
- toolbox.register("select", tools.selNSGA2)
- total_size = len(settings)
- pop_size = population_size # number of individuals in each generation
- lambda_ = pop_size # number of children to produce at each generation
- mu = int(pop_size * 0.8) # number of individuals to select for the next generation
- cxpb = 0.95 # probability that an offspring is produced by crossover
- mutpb = 1 - cxpb # probability that an offspring is produced by mutation
- ngen = ngen_size # number of generation
- pop = toolbox.population(pop_size)
- hof = tools.ParetoFront() # end result of pareto front
- stats = tools.Statistics(lambda ind: ind.fitness.values)
- np.set_printoptions(suppress=True)
- stats.register("mean", np.mean, axis=0)
- stats.register("std", np.std, axis=0)
- stats.register("min", np.min, axis=0)
- stats.register("max", np.max, axis=0)
- algorithms.eaMuPlusLambda(
- pop,
- toolbox,
- mu,
- lambda_,
- cxpb,
- mutpb,
- ngen,
- stats,
- halloffame=hof
- )
- # Return result list
- results = []
- for parameter_values in hof:
- setting = dict(parameter_values)
- target_value = ga_optimize(parameter_values)[0]
- results.append((setting, target_value, {}))
- return results