如何在PaddlePaddle中使用VisualDL
下面我们演示一下如何在PaddlePaddle中使用VisualDL,从而可以把PaddlePaddle的训练过程可视化出来。我们将以PaddlePaddle用卷积神经网络(CNN, Convolutional Neural Network)来训练Cifar10 数据集作为例子。
以下范例是在官方Paddle Book Example的基础上用PaddlePaddle’s Fluid API修改。
完整的演示程序可以在这里下载。
这程序是在Paddle v2 0.11版本上开发。可以用pip install paddlepaddle
或 docker pull paddlepaddle/paddle:0.11.0
来安装。注意Paddle还没支持Python3和protobuf需要3.5+。如果出现TypeError: init() got an unexpected keyword argument 'file'
, 是因为protobuf不是3.5以上,运行pip install —upgrade protobuf
就能解决。安装详细流程请看这里
首先我们创建Loggers来记录不同种类的数据:
- # create VisualDL logger and directory
- logdir = "./tmp"
- logwriter = LogWriter(logdir, sync_cycle=10)
- # create 'train' run
- with logwriter.mode("train") as writer:
- # create 'loss' scalar tag to keep track of loss function
- loss_scalar = writer.scalar("loss")
- with logwriter.mode("train") as writer:
- acc_scalar = writer.scalar("acc")
- num_samples = 4
- with logwriter.mode("train") as writer:
- conv_image = writer.image("conv_image", num_samples, 1) #show 4 samples for every 1 step
- input_image = writer.image("input_image", num_samples, 1)
- with logwriter.mode("train") as writer:
- param1_histgram = writer.histogram("param1", 100) #100 buckets, e.g 100 data sets in a histograms
我们再来用Paddle v2 Fluid APIs创建VGG CNN模型:
- def vgg16_bn_drop(input):
- def conv_block(input, num_filter, groups, dropouts):
- return fluid.nets.img_conv_group(
- input=input,
- pool_size=2,
- pool_stride=2,
- conv_num_filter=[num_filter] * groups,
- conv_filter_size=3,
- conv_act='relu',
- conv_with_batchnorm=True,
- conv_batchnorm_drop_rate=dropouts,
- pool_type='max')
- conv1 = conv_block(input, 64, 2, [0.3, 0])
- conv2 = conv_block(conv1, 128, 2, [0.4, 0])
- conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
- conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
- conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
- drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
- fc1 = fluid.layers.fc(input=drop, size=512, act=None)
- bn = fluid.layers.batch_norm(input=fc1, act='relu')
- drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
- fc2 = fluid.layers.fc(input=drop2, size=512, act=None)
- return fc2, conv1
- classdim = 10
- data_shape = [3, 32, 32]
- images = fluid.layers.data(name='pixel', shape=data_shape, dtype='float32')
- label = fluid.layers.data(name='label', shape=[1], dtype='int64')
- net, conv1 = vgg16_bn_drop(images)
- predict = fluid.layers.fc(
- input=net,
- size=classdim,
- act='softmax',
- param_attr=ParamAttr(name="param1", initializer=NormalInitializer()))
- cost = fluid.layers.cross_entropy(input=predict, label=label)
- avg_cost = fluid.layers.mean(x=cost)
- optimizer = fluid.optimizer.Adam(learning_rate=0.001)
- opts = optimizer.minimize(avg_cost)
- accuracy = fluid.evaluator.Accuracy(input=predict, label=label)
- BATCH_SIZE = 16
- PASS_NUM = 1
- train_reader = paddle.batch(
- paddle.reader.shuffle(paddle.dataset.cifar.train10(), buf_size=128 * 10),
- batch_size=BATCH_SIZE)
- place = fluid.CPUPlace()
- exe = fluid.Executor(place)
- feeder = fluid.DataFeeder(place=place, feed_list=[images, label])
- exe.run(fluid.default_startup_program())
接下来我们开始训练并且同时用 VisualDL 来采集相关数据
- for pass_id in range(PASS_NUM):
- accuracy.reset(exe)
- for data in train_reader():
- loss, conv1_out, param1, acc = exe.run(
- fluid.default_main_program(),
- feed=feeder.feed(data),
- fetch_list=[avg_cost, conv1, param1_var] + accuracy.metrics)
- pass_acc = accuracy.eval(exe)
- # all code below is for VisualDL
- # start picking sample from beginning
- if sample_num == 0:
- input_image.start_sampling()
- conv_image.start_sampling()
- idx1 = input_image.is_sample_taken()
- idx2 = conv_image.is_sample_taken()
- assert idx1 == idx2
- idx = idx1
- if idx != -1:
- image_data = data[0][0]
- # reshape the image to 32x32 and 3 channels
- input_image_data = np.transpose(
- image_data.reshape(data_shape), axes=[1, 2, 0])
- # add sample to VisualDL Image Writer to view input image
- input_image.set_sample(idx, input_image_data.shape,
- input_image_data.flatten())
- conv_image_data = conv1_out[0][0]
- # add sample to view conv image
- conv_image.set_sample(idx, conv_image_data.shape,
- conv_image_data.flatten())
- sample_num += 1
- # when we have enough samples, call finish sampling()
- if sample_num % num_samples == 0:
- input_image.finish_sampling()
- conv_image.finish_sampling()
- sample_num = 0
- # add record for loss and accuracy to scalar
- loss_scalar.add_record(step, loss)
- acc_scalar.add_record(step, acc)
- param1_histgram.add_record(step, param1.flatten())
- print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(
- pass_acc))
- step += 1
训练结束后,各个组件的可视化结果如下:
关于accuracy和loss的数值图的如下:
训练过后的来源图和卷积权重图的各四个样本如下: