1. # coding=utf-8
      2. from __future__ import print_function, absolute_import, unicode_literals
      3. import numpy as np
      4. import pandas as pd
      5. from gm.api import *
      6. '''
      7. 本策略首先计算了过去300个价格数据的均值和标准差
      8. 并根据均值加减1和2个标准差得到网格的区间分界线,
      9. 并分别配以0.3和0.5的仓位权重
      10. 然后根据价格所在的区间来配置仓位(+/-40为上下界,无实际意义):
      11. (-40,-3],(-3,-2],(-2,2],(2,3],(3,40](具体价格等于均值+数字倍标准差)
      12. [-0.5, -0.3, 0.0, 0.3, 0.5](资金比例,此处负号表示开空仓)
      13. 回测数据为:SHFE.rb1801的1min数据
      14. 回测时间为:2017-07-01 08:00:00到2017-10-01 16:00:00
      15. '''
      16. def init(context):
      17. context.symbol = 'SHFE.rb1801'
      18. # 订阅SHFE.rb1801, bar频率为1min
      19. subscribe(symbols=context.symbol, frequency='60s')
      20. # 获取过去300个价格数据
      21. timeseries = history_n(symbol=context.symbol, frequency='60s', count=300, fields='close', fill_missing='Last',
      22. end_time='2017-07-01 08:00:00', df=True)['close'].values
      23. # 获取网格区间分界线
      24. context.band = np.mean(timeseries) + np.array([-40, -3, -2, 2, 3, 40]) * np.std(timeseries)
      25. # 设置网格的仓位
      26. context.weight = [0.5, 0.3, 0.0, 0.3, 0.5]
      27. def on_bar(context, bars):
      28. bar = bars[0]
      29. # 根据价格落在(-40,-3],(-3,-2],(-2,2],(2,3],(3,40]的区间范围来获取最新收盘价所在的价格区间
      30. grid = pd.cut([bar.close], context.band, labels=[0, 1, 2, 3, 4])[0]
      31. # 获取多仓仓位
      32. position_long = context.account().position(symbol=context.symbol, side=PositionSide_Long)
      33. # 获取空仓仓位
      34. position_short = context.account().position(symbol=context.symbol, side=PositionSide_Short)
      35. # 若无仓位且价格突破则按照设置好的区间开仓
      36. if not position_long and not position_short and grid != 2:
      37. # 大于3为在中间网格的上方,做多
      38. if grid >= 3:
      39. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      40. position_side=PositionSide_Long)
      41. print(context.symbol, '以市价单开多仓到仓位', context.weight[grid])
      42. if grid <= 1:
      43. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      44. position_side=PositionSide_Short)
      45. print(context.symbol, '以市价单开空仓到仓位', context.weight[grid])
      46. # 持有多仓的处理
      47. elif position_long:
      48. if grid >= 3:
      49. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      50. position_side=PositionSide_Long)
      51. print(context.symbol, '以市价单调多仓到仓位', context.weight[grid])
      52. # 等于2为在中间网格,平仓
      53. elif grid == 2:
      54. order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
      55. position_side=PositionSide_Long)
      56. print(context.symbol, '以市价单全平多仓')
      57. # 小于1为在中间网格的下方,做空
      58. elif grid <= 1:
      59. order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
      60. position_side=PositionSide_Long)
      61. print(context.symbol, '以市价单全平多仓')
      62. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      63. position_side=PositionSide_Short)
      64. print(context.symbol, '以市价单开空仓到仓位', context.weight[grid])
      65. # 持有空仓的处理
      66. elif position_short:
      67. # 小于1为在中间网格的下方,做空
      68. if grid <= 1:
      69. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      70. position_side=PositionSide_Short)
      71. print(context.symbol, '以市价单调空仓到仓位', context.weight[grid])
      72. # 等于2为在中间网格,平仓
      73. elif grid == 2:
      74. order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
      75. position_side=PositionSide_Short)
      76. print(context.symbol, '以市价单全平空仓')
      77. # 大于3为在中间网格的上方,做多
      78. elif grid >= 3:
      79. order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
      80. position_side=PositionSide_Short)
      81. print(context.symbol, '以市价单全平空仓')
      82. order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
      83. position_side=PositionSide_Long)
      84. print(context.symbol, '以市价单开多仓到仓位', context.weight[grid])
      85. if __name__ == '__main__':
      86. '''
      87. strategy_id策略ID,由系统生成
      88. filename文件名,请与本文件名保持一致
      89. mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
      90. token绑定计算机的ID,可在系统设置-密钥管理中生成
      91. backtest_start_time回测开始时间
      92. backtest_end_time回测结束时间
      93. backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
      94. backtest_initial_cash回测初始资金
      95. backtest_commission_ratio回测佣金比例
      96. backtest_slippage_ratio回测滑点比例
      97. '''
      98. run(strategy_id='strategy_id',
      99. filename='main.py',
      100. mode=MODE_BACKTEST,
      101. token='token_id',
      102. backtest_start_time='2017-07-01 08:00:00',
      103. backtest_end_time='2017-10-01 16:00:00',
      104. backtest_adjust=ADJUST_PREV,
      105. backtest_initial_cash=10000000,
      106. backtest_commission_ratio=0.0001,
      107. backtest_slippage_ratio=0.0001)

    [网格交易(期货)]

    原文: https://www.myquant.cn/docs/python_strategyies/104