Objects
The Objects pipeline reads a list of images and returns a list of detected objects.
Example
The following shows a simple example using this pipeline.
from txtai.pipeline import Objects
# Create and run pipeline
objects = Objects()
objects("path to image file")
See the link below for a more detailed example.
Notebook | Description | |
---|---|---|
Generate image captions and detect objects | Captions and object detection for images |
Configuration-driven example
Pipelines are run with Python or configuration. Pipelines can be instantiated in configuration using the lower case name of the pipeline. Configuration-driven pipelines are run with workflows or the API.
config.yml
# Create pipeline using lower case class name
objects:
# Run pipeline with workflow
workflow:
objects:
tasks:
- action: objects
Run with Workflows
from txtai.app import Application
# Create and run pipeline with workflow
app = Application("config.yml")
list(app.workflow("objects", ["path to image file"]))
Run with API
CONFIG=config.yml uvicorn "txtai.api:app" &
curl \
-X POST "http://localhost:8000/workflow" \
-H "Content-Type: application/json" \
-d '{"name":"objects", "elements":["path to image file"]}'
Methods
Python documentation for the pipeline.
Source code in txtai/pipeline/image/objects.py
|
|
Applies object detection/image classification models to images. Returns a list of (label, score).
This method supports a single image or a list of images. If the input is an image, the return type is a 1D list of (label, score). If text is a list, a 2D list of (label, score) is returned with a row per image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images | image|list | required | |
flatten | flatten output to a list of objects | False | |
workers | number of concurrent workers to use for processing data, defaults to None | 0 |
Returns:
Type | Description |
---|---|
list of (label, score) |
Source code in txtai/pipeline/image/objects.py
|
|