MLOnnx
Exports a traditional machine learning model (i.e. scikit-learn) to ONNX.
Example
See the link below for a detailed example.
Notebook | Description | |
---|---|---|
Export and run other machine learning models | Export and run models from scikit-learn, PyTorch and more |
Methods
Python documentation for the pipeline.
__call__(self, model, task='default', output=None, opset=12)
special
Exports a machine learning model to ONNX using ONNXMLTools.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | model to export | required | |
task | optional model task or category | ‘default’ | |
output | optional output model path, defaults to return byte array if None | None | |
opset | onnx opset, defaults to 12 | 12 |
Returns:
Type | Description |
---|---|
path to model output or model as bytes depending on output parameter |
Source code in txtai/pipeline/train/mlonnx.py
def __call__(self, model, task="default", output=None, opset=12):
"""
Exports a machine learning model to ONNX using ONNXMLTools.
Args:
model: model to export
task: optional model task or category
output: optional output model path, defaults to return byte array if None
opset: onnx opset, defaults to 12
Returns:
path to model output or model as bytes depending on output parameter
"""
# Convert scikit-learn model to ONNX
model = convert_sklearn(model, task, initial_types=[("input_ids", StringTensorType([None, None]))], target_opset=opset)
# Prune model graph down to only output probabilities
model = select_model_inputs_outputs(model, outputs="probabilities")
# pylint: disable=E1101
# Rename output to logits for consistency with other models
model.graph.output[0].name = "logits"
# Find probabilities output node and rename to logits
for node in model.graph.node:
if node.output[0] == "probabilities":
node.output[0] = "logits"
# Save model to specified output path or return bytes
model = save_onnx_model(model, output)
return output if output else model