Entity
The Entity pipeline applies a token classifier to text and extracts entity/label combinations.
Example
The following shows a simple example using this pipeline.
from txtai.pipeline import Entity
# Create and run pipeline
entity = Entity()
entity("Canada's last fully intact ice shelf has suddenly collapsed, " \
"forming a Manhattan-sized iceberg")
See the link below for a more detailed example.
Notebook | Description | |
---|---|---|
Entity extraction workflows | Identify entity/label combinations |
Configuration-driven example
Pipelines are run with Python or configuration. Pipelines can be instantiated in configuration using the lower case name of the pipeline. Configuration-driven pipelines are run with workflows or the API.
config.yml
# Create pipeline using lower case class name
entity:
# Run pipeline with workflow
workflow:
entity:
tasks:
- action: entity
Run with Workflows
from txtai.app import Application
# Create and run pipeline with workflow
app = Application("config.yml")
list(app.workflow("entity", ["Canada's last fully intact ice shelf has suddenly collapsed, forming a Manhattan-sized iceberg"]))
Run with API
CONFIG=config.yml uvicorn "txtai.api:app" &
curl \
-X POST "http://localhost:8000/workflow" \
-H "Content-Type: application/json" \
-d '{"name":"entity", "elements": ["Canadas last fully intact ice shelf has suddenly collapsed, forming a Manhattan-sized iceberg"]}'
Methods
Python documentation for the pipeline.
__init__(self, path=None, quantize=False, gpu=True, model=None)
special
Source code in txtai/pipeline/text/entity.py
def __init__(self, path=None, quantize=False, gpu=True, model=None):
super().__init__("token-classification", path, quantize, gpu, model)
__call__(self, text, labels=None, aggregate='simple', flatten=None, join=False, workers=0)
special
Applies a token classifier to text and extracts entity/label combinations.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text | text|list | required | |
labels | list of entity type labels to accept, defaults to None which accepts all | None | |
aggregate | method to combine multi token entities - options are “simple” (default), “first”, “average” or “max” | ‘simple’ | |
flatten | flatten output to a list of labels if present. Accepts a boolean or float value to only keep scores greater than that number. | None | |
join | joins flattened output into a string if True, ignored if flatten not set | False | |
workers | number of concurrent workers to use for processing data, defaults to None | 0 |
Returns:
Type | Description |
---|---|
list of (entity, entity type, score) or list of entities depending on flatten parameter |
Source code in txtai/pipeline/text/entity.py
def __call__(self, text, labels=None, aggregate="simple", flatten=None, join=False, workers=0):
"""
Applies a token classifier to text and extracts entity/label combinations.
Args:
text: text|list
labels: list of entity type labels to accept, defaults to None which accepts all
aggregate: method to combine multi token entities - options are "simple" (default), "first", "average" or "max"
flatten: flatten output to a list of labels if present. Accepts a boolean or float value to only keep scores greater than that number.
join: joins flattened output into a string if True, ignored if flatten not set
workers: number of concurrent workers to use for processing data, defaults to None
Returns:
list of (entity, entity type, score) or list of entities depending on flatten parameter
"""
# Run token classification pipeline
results = self.pipeline(text, aggregation_strategy=aggregate, num_workers=workers)
# Convert results to a list if necessary
if isinstance(text, str):
results = [results]
# Score threshold when flatten is set
threshold = 0.0 if isinstance(flatten, bool) else flatten
# Extract entities if flatten set, otherwise extract (entity, entity type, score) tuples
outputs = []
for result in results:
if flatten:
output = [r["word"] for r in result if self.accept(r["entity_group"], labels) and r["score"] >= threshold]
outputs.append(" ".join(output) if join else output)
else:
outputs.append([(r["word"], r["entity_group"], float(r["score"])) for r in result if self.accept(r["entity_group"], labels)])
return outputs[0] if isinstance(text, str) else outputs