hifive1b
Constants
const (
P00 Pin = 0
P01 Pin = 1
P02 Pin = 2
P03 Pin = 3
P04 Pin = 4
P05 Pin = 5
P06 Pin = 6
P07 Pin = 7
P08 Pin = 8
P09 Pin = 9
P10 Pin = 10
P11 Pin = 11
P12 Pin = 12
P13 Pin = 13
P14 Pin = 14
P15 Pin = 15
P16 Pin = 16
P17 Pin = 17
P18 Pin = 18
P19 Pin = 19
P20 Pin = 20
P21 Pin = 21
P22 Pin = 22
P23 Pin = 23
P24 Pin = 24
P25 Pin = 25
P26 Pin = 26
P27 Pin = 27
P28 Pin = 28
P29 Pin = 29
P30 Pin = 30
P31 Pin = 31
)
const (
D0 = P16
D1 = P17
D2 = P18
D3 = P19 // Green LED/PWM (PWM1_PWM1)
D4 = P20 // PWM (PWM1_PWM0)
D5 = P21 // Blue LED/PWM (PWM1_PWM2)
D6 = P22 // Red LED/PWM (PWM1_PWM3)
D7 = P16
D8 = NoPin // PWM?
D9 = P01
D10 = P02 // SPI1_CS0
D11 = P03 // SPI1_DQ0
D12 = P04 // SPI1_DQ1
D13 = P05 // SPI1_SCK
D14 = NoPin // not connected
D15 = P09 // does not seem to work?
D16 = P10 // PWM (PWM2_PWM0)
D17 = P11 // PWM (PWM2_PWM1)
D18 = P12 // SDA (I2C0_SDA)/PWM (PWM2_PWM2)
D19 = P13 // SDL (I2C0_SCL)/PWM (PWM2_PWM3)
)
const (
LED = LED1
LED1 = LED_RED
LED2 = LED_GREEN
LED3 = LED_BLUE
LED_RED = P22
LED_GREEN = P19
LED_BLUE = P21
)
const (
// TODO: figure out the pin numbers for these.
UART_TX_PIN = NoPin
UART_RX_PIN = NoPin
)
const (
SPI0_SCK_PIN = NoPin
SPI0_MOSI_PIN = NoPin
SPI0_MISO_PIN = NoPin
SPI1_SCK_PIN = D13
SPI1_MOSI_PIN = D11
SPI1_MISO_PIN = D12
)
SPI pins
const NoPin = Pin(-1)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave oneof the pins in a peripheral unconfigured (if supported by the hardware).
const (
PinInput PinMode = iota
PinOutput
PinPWM
PinSPI
PinI2C = PinSPI
)
Variables
var (
SPI1 = SPI{
Bus: sifive.QSPI1,
}
)
SPI on the HiFive1.
var (
ErrInvalidInputPin = errors.New("machine: invalid input pin")
ErrInvalidOutputPin = errors.New("machine: invalid output pin")
ErrInvalidClockPin = errors.New("machine: invalid clock pin")
ErrInvalidDataPin = errors.New("machine: invalid data pin")
)
var (
UART0 = UART{Bus: sifive.UART0, Buffer: NewRingBuffer()}
)
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
)
func CPUFrequency
func CPUFrequency() uint32
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
type ADC
type ADC struct {
Pin Pin
}
type PWM
type PWM struct {
Pin Pin
}
type Pin
type Pin int8
Pin is a single pin on a chip, which may be connected to other hardwaredevices. It can either be used directly as GPIO pin or it can be used inother peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an outputpin. It is hardware dependent (and often undefined) what happens if you set apin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an outputpin. It is hardware dependent (and often undefined) what happens if you set apin to low that is not configured as an output pin.
func (Pin) Set
func (p Pin) Set(high bool)
Set the pin to high or low.
type PinConfig
type PinConfig struct {
Mode PinMode
}
type PinMode
type PinMode uint8
type RingBuffer
type RingBuffer struct {
rxbuffer [bufferSize]volatile.Register8
head volatile.Register8
tail volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post athttps://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
It has some limitations currently due to how “volatile” variables that aremembers of a struct are not compiled correctly by TinyGo.See https://github.com/tinygo-org/tinygo/issues/151 for details.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty,the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is alreadyfull, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct {
Bus *sifive.QSPI_Type
}
SPI on the FE310. The normal SPI0 is actually a quad-SPI meant for flash, so it is bestto use SPI1 or SPI2 port for most applications.
func (SPI) Configure
func (spi SPI) Configure(config SPIConfig) error
Configure is intended to setup the SPI interface.
func (SPI) Transfer
func (spi SPI) Transfer(w byte) (byte, error)
Transfer writes/reads a single byte using the SPI interface.
func (SPI) Tx
func (spi SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/readinterface, there must always be the same number of bytes written as bytes read.The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zerosuntil all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct {
Frequency uint32
SCK Pin
MOSI Pin
MISO Pin
LSBFirst bool
Mode uint8
}
SPIConfig is used to store config info for SPI.
type UART
type UART struct {
Bus *sifive.UART_Type
Buffer *RingBuffer
}
func (UART) Buffered
func (uart UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (UART) Configure
func (uart UART) Configure(config UARTConfig)
func (UART) Read
func (uart UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (UART) ReadByte
func (uart UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer.If there is no data in the buffer, returns an error.
func (UART) Receive
func (uart UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer.Usually called by the IRQ handler for a machine.
func (UART) Write
func (uart UART) Write(data []byte) (n int, err error)
Write data to the UART.
func (UART) WriteByte
func (uart UART) WriteByte(c byte)
type UARTConfig
type UARTConfig struct {
BaudRate uint32
TX Pin
RX Pin
}