pca10056
Constants
const HasLowFrequencyCrystal = true
const (
LED Pin = LED1
LED1 Pin = 13
LED2 Pin = 14
LED3 Pin = 15
LED4 Pin = 16
)
LEDs on the pca10056
const (
BUTTON Pin = BUTTON1
BUTTON1 Pin = 11
BUTTON2 Pin = 12
BUTTON3 Pin = 24
BUTTON4 Pin = 25
)
Buttons on the pca10056
const (
UART_TX_PIN Pin = 6
UART_RX_PIN Pin = 8
)
UART pins
const (
ADC0 Pin = 3
ADC1 Pin = 4
ADC2 Pin = 28
ADC3 Pin = 29
ADC4 Pin = 30
ADC5 Pin = 31
)
ADC pins
const (
SDA_PIN Pin = 26 // P0.26
SCL_PIN Pin = 27 // P0.27
)
I2C pins
const (
SPI0_SCK_PIN Pin = 47 // P1.15
SPI0_MOSI_PIN Pin = 45 // P1.13
SPI0_MISO_PIN Pin = 46 // P1.14
)
SPI pins
const (
TWI_FREQ_100KHZ = 100000
TWI_FREQ_400KHZ = 400000
)
TWI_FREQ is the I2C bus speed. Normally either 100 kHz, or 400 kHz for high-speed bus.
const NoPin = Pin(-1)
NoPin explicitly indicates “not a pin”. Use this pin if you want to leave oneof the pins in a peripheral unconfigured (if supported by the hardware).
const (
PinInput PinMode = (nrf.GPIO_PIN_CNF_DIR_Input << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Connect << nrf.GPIO_PIN_CNF_INPUT_Pos)
PinInputPullup PinMode = PinInput | (nrf.GPIO_PIN_CNF_PULL_Pullup << nrf.GPIO_PIN_CNF_PULL_Pos)
PinInputPulldown PinMode = PinOutput | (nrf.GPIO_PIN_CNF_PULL_Pulldown << nrf.GPIO_PIN_CNF_PULL_Pos)
PinOutput PinMode = (nrf.GPIO_PIN_CNF_DIR_Output << nrf.GPIO_PIN_CNF_DIR_Pos) | (nrf.GPIO_PIN_CNF_INPUT_Disconnect << nrf.GPIO_PIN_CNF_INPUT_Pos)
)
const (
P0_00 Pin = 0
P0_01 Pin = 1
P0_02 Pin = 2
P0_03 Pin = 3
P0_04 Pin = 4
P0_05 Pin = 5
P0_06 Pin = 6
P0_07 Pin = 7
P0_08 Pin = 8
P0_09 Pin = 9
P0_10 Pin = 10
P0_11 Pin = 11
P0_12 Pin = 12
P0_13 Pin = 13
P0_14 Pin = 14
P0_15 Pin = 15
P0_16 Pin = 16
P0_17 Pin = 17
P0_18 Pin = 18
P0_19 Pin = 19
P0_20 Pin = 20
P0_21 Pin = 21
P0_22 Pin = 22
P0_23 Pin = 23
P0_24 Pin = 24
P0_25 Pin = 25
P0_26 Pin = 26
P0_27 Pin = 27
P0_28 Pin = 28
P0_29 Pin = 29
P0_30 Pin = 30
P0_31 Pin = 31
P1_00 Pin = 32
P1_01 Pin = 33
P1_02 Pin = 34
P1_03 Pin = 35
P1_04 Pin = 36
P1_05 Pin = 37
P1_06 Pin = 38
P1_07 Pin = 39
P1_08 Pin = 40
P1_09 Pin = 41
P1_10 Pin = 42
P1_11 Pin = 43
P1_12 Pin = 44
P1_13 Pin = 45
P1_14 Pin = 46
P1_15 Pin = 47
)
Hardware pins
Variables
var (
ErrInvalidInputPin = errors.New("machine: invalid input pin")
ErrInvalidOutputPin = errors.New("machine: invalid output pin")
ErrInvalidClockPin = errors.New("machine: invalid clock pin")
ErrInvalidDataPin = errors.New("machine: invalid data pin")
)
var (
ErrTxInvalidSliceSize = errors.New("SPI write and read slices must be same size")
)
var (
// UART0 is the hardware serial port on the NRF.
UART0 = UART{Buffer: NewRingBuffer()}
)
UART
var (
I2C0 = I2C{Bus: nrf.TWI0}
I2C1 = I2C{Bus: nrf.TWI1}
)
There are 2 I2C interfaces on the NRF.
var (
SPI0 = SPI{Bus: nrf.SPI0}
SPI1 = SPI{Bus: nrf.SPI1}
)
There are 2 SPI interfaces on the NRF5x.
func CPUFrequency
func CPUFrequency() uint32
func InitADC
func InitADC()
InitADC initializes the registers needed for ADC.
func InitPWM
func InitPWM()
InitPWM initializes the registers needed for PWM.
func NewRingBuffer
func NewRingBuffer() *RingBuffer
NewRingBuffer returns a new ring buffer.
type ADC
type ADC struct {
Pin Pin
}
func (ADC) Configure
func (a ADC) Configure()
Configure configures an ADC pin to be able to read analog data.
func (ADC) Get
func (a ADC) Get() uint16
Get returns the current value of a ADC pin in the range 0..0xffff.
type I2C
type I2C struct {
Bus *nrf.TWI_Type
}
I2C on the NRF.
func (I2C) Configure
func (i2c I2C) Configure(config I2CConfig)
Configure is intended to setup the I2C interface.
func (I2C) ReadRegister
func (i2c I2C) ReadRegister(address uint8, register uint8, data []byte) error
ReadRegister transmits the register, restarts the connection as a readoperation, and reads the response.
Many I2C-compatible devices are organized in terms of registers. This methodis a shortcut to easily read such registers. Also, it only works for deviceswith 7-bit addresses, which is the vast majority.
func (I2C) Tx
func (i2c I2C) Tx(addr uint16, w, r []byte) error
Tx does a single I2C transaction at the specified address.It clocks out the given address, writes the bytes in w, reads back len®bytes and stores them in r, and generates a stop condition on the bus.
func (I2C) WriteRegister
func (i2c I2C) WriteRegister(address uint8, register uint8, data []byte) error
WriteRegister transmits first the register and then the data to theperipheral device.
Many I2C-compatible devices are organized in terms of registers. This methodis a shortcut to easily write to such registers. Also, it only works fordevices with 7-bit addresses, which is the vast majority.
type I2CConfig
type I2CConfig struct {
Frequency uint32
SCL Pin
SDA Pin
}
I2CConfig is used to store config info for I2C.
type PWM
type PWM struct {
Pin Pin
}
func (PWM) Configure
func (pwm PWM) Configure()
Configure configures a PWM pin for output.
func (PWM) Set
func (pwm PWM) Set(value uint16)
Set turns on the duty cycle for a PWM pin using the provided value.
type Pin
type Pin int8
Pin is a single pin on a chip, which may be connected to other hardwaredevices. It can either be used directly as GPIO pin or it can be used inother peripherals like ADC, I2C, etc.
func (Pin) Configure
func (p Pin) Configure(config PinConfig)
Configure this pin with the given configuration.
func (Pin) Get
func (p Pin) Get() bool
Get returns the current value of a GPIO pin.
func (Pin) High
func (p Pin) High()
High sets this GPIO pin to high, assuming it has been configured as an outputpin. It is hardware dependent (and often undefined) what happens if you set apin to high that is not configured as an output pin.
func (Pin) Low
func (p Pin) Low()
Low sets this GPIO pin to low, assuming it has been configured as an outputpin. It is hardware dependent (and often undefined) what happens if you set apin to low that is not configured as an output pin.
func (Pin) PortMaskClear
func (p Pin) PortMaskClear() (*uint32, uint32)
Return the register and mask to disable a given port. This can be used toimplement bit-banged drivers.
func (Pin) PortMaskSet
func (p Pin) PortMaskSet() (*uint32, uint32)
Return the register and mask to enable a given GPIO pin. This can be used toimplement bit-banged drivers.
func (Pin) Set
func (p Pin) Set(high bool)
Set the pin to high or low.Warning: only use this on an output pin!
type PinConfig
type PinConfig struct {
Mode PinMode
}
type PinMode
type PinMode uint8
type RingBuffer
type RingBuffer struct {
rxbuffer [bufferSize]volatile.Register8
head volatile.Register8
tail volatile.Register8
}
RingBuffer is ring buffer implementation inspired by post athttps://www.embeddedrelated.com/showthread/comp.arch.embedded/77084-1.php
It has some limitations currently due to how “volatile” variables that aremembers of a struct are not compiled correctly by TinyGo.See https://github.com/tinygo-org/tinygo/issues/151 for details.
func (*RingBuffer) Get
func (rb *RingBuffer) Get() (byte, bool)
Get returns a byte from the buffer. If the buffer is empty,the method will return a false as the second value.
func (*RingBuffer) Put
func (rb *RingBuffer) Put(val byte) bool
Put stores a byte in the buffer. If the buffer is alreadyfull, the method will return false.
func (*RingBuffer) Used
func (rb *RingBuffer) Used() uint8
Used returns how many bytes in buffer have been used.
type SPI
type SPI struct {
Bus *nrf.SPI_Type
}
SPI on the NRF.
func (SPI) Configure
func (spi SPI) Configure(config SPIConfig)
Configure is intended to setup the SPI interface.
func (SPI) Transfer
func (spi SPI) Transfer(w byte) (byte, error)
Transfer writes/reads a single byte using the SPI interface.
func (SPI) Tx
func (spi SPI) Tx(w, r []byte) error
Tx handles read/write operation for SPI interface. Since SPI is a syncronous write/readinterface, there must always be the same number of bytes written as bytes read.The Tx method knows about this, and offers a few different ways of calling it.
This form sends the bytes in tx buffer, putting the resulting bytes read into the rx buffer.Note that the tx and rx buffers must be the same size:
spi.Tx(tx, rx)
This form sends the tx buffer, ignoring the result. Useful for sending “commands” that return zerosuntil all the bytes in the command packet have been received:
spi.Tx(tx, nil)
This form sends zeros, putting the result into the rx buffer. Good for reading a “result packet”:
spi.Tx(nil, rx)
type SPIConfig
type SPIConfig struct {
Frequency uint32
SCK Pin
MOSI Pin
MISO Pin
LSBFirst bool
Mode uint8
}
SPIConfig is used to store config info for SPI.
type UART
type UART struct {
Buffer *RingBuffer
}
UART on the NRF.
func (UART) Buffered
func (uart UART) Buffered() int
Buffered returns the number of bytes currently stored in the RX buffer.
func (UART) Configure
func (uart UART) Configure(config UARTConfig)
Configure the UART.
func (UART) Read
func (uart UART) Read(data []byte) (n int, err error)
Read from the RX buffer.
func (UART) ReadByte
func (uart UART) ReadByte() (byte, error)
ReadByte reads a single byte from the RX buffer.If there is no data in the buffer, returns an error.
func (UART) Receive
func (uart UART) Receive(data byte)
Receive handles adding data to the UART’s data buffer.Usually called by the IRQ handler for a machine.
func (UART) SetBaudRate
func (uart UART) SetBaudRate(br uint32)
SetBaudRate sets the communication speed for the UART.
func (UART) Write
func (uart UART) Write(data []byte) (n int, err error)
Write data to the UART.
func (UART) WriteByte
func (uart UART) WriteByte(c byte) error
WriteByte writes a byte of data to the UART.
type UARTConfig
type UARTConfig struct {
BaudRate uint32
TX Pin
RX Pin
}