TiKV 性能参数调优

本文档用于描述如何根据机器配置情况来调整 TiKV 的参数,使 TiKV 的性能达到最优。

TiKV 最底层使用的是 RocksDB 做为持久化存储,所以 TiKV 的很多性能相关的参数都是与 RocksDB 相关的。TiKV 使用了两个 RocksDB 实例,默认 RocksDB 实例存储 KV 数据,Raft RocksDB 实例(简称 RaftDB)存储 Raft 数据。

TiKV 使用了 RocksDB 的 Column Families (CF) 特性。

  • 默认 RocksDB 实例将 KV 数据存储在内部的 defaultwritelock 3 个 CF 内。

    • default CF 存储的是真正的数据,与其对应的参数位于 [rocksdb.defaultcf] 项中;
    • write CF 存储的是数据的版本信息 (MVCC) 以及索引相关的数据,相关的参数位于 [rocksdb.writecf] 项中;
    • lock CF 存储的是锁信息,系统使用默认参数。
  • Raft RocksDB 实例存储 Raft log。

    • default CF 主要存储的是 Raft log,与其对应的参数位于 [raftdb.defaultcf] 项中。

在 TiKV 3.0 版本后,所有的 CF 默认共同使用一个 block cache 实例。通过在 [storage.block-cache] 下设置 capacity 参数,你可以配置该 block cache 的大小。block cache 越大,能够缓存的热点数据越多,读取数据越容易,同时占用的系统内存也越多。如果要为每个 CF 使用单独的 block cache 实例,需要在 [storage.block-cache] 下设置 shared=false,并为每个 CF 配置单独的 block cache 大小。例如,可以在 [rocksdb.writecf] 下设置 block-cache-size 参数来配置 write CF 的大小。

在 TiKV 3.0 之前的版本中,不支持使用 shared block cache,因此需要为每个 CF 单独配置 block cache。

每个 CF 有各自的 write-buffer,大小通过 write-buffer-size 控制。

参数说明

  1. # 日志级别,可选值为:trace,debug,info,warn,error,off
  2. log-level = "info"
  3. [server]
  4. # 监听地址
  5. # addr = "127.0.0.1:20160"
  6. # gRPC 线程池大小
  7. # grpc-concurrency = 4
  8. # TiKV 每个实例之间的 gRPC 连接数
  9. # grpc-raft-conn-num = 10
  10. # TiDB 过来的大部分读请求都会发送到 TiKV 的 Coprocessor 进行处理,该参数用于设置
  11. # coprocessor 线程的个数,如果业务是读请求比较多,增加 coprocessor 的线程数,但应比系统的
  12. # CPU 核数小。例如:TiKV 所在的机器有 32 core,在重读的场景下甚至可以将该参数设置为 30。在没有
  13. # 设置该参数的情况下,TiKV 会自动将该值设置为 CPU 总核数乘以 0.8。
  14. # end-point-concurrency = 8
  15. # 可以给 TiKV 实例打标签,用于副本的调度
  16. # labels = {zone = "cn-east-1", host = "118", disk = "ssd"}
  17. [storage]
  18. # 数据目录
  19. # data-dir = "/tmp/tikv/store"
  20. # 通常情况下使用默认值就可以了。在导数据的情况下建议将该参数设置为 1024000。
  21. # scheduler-concurrency = 102400
  22. # 该参数控制写入线程的个数,当写入操作比较频繁的时候,需要把该参数调大。使用 top -H -p tikv-pid
  23. # 发现名称为 sched-worker-pool 的线程都特别忙,这个时候就需要将 scheduler-worker-pool-size
  24. # 参数调大,增加写线程的个数。
  25. # scheduler-worker-pool-size = 4
  26. [storage.block-cache]
  27. ## 是否为 RocksDB 的所有 CF 都创建一个 `shared block cache`。
  28. ##
  29. ## RocksDB 使用 block cache 来缓存未压缩的数据块。较大的 block cache 可以加快读取速度。
  30. ## 推荐开启 `shared block cache` 参数。这样只需要设置全部缓存大小,使配置过程更加方便。
  31. ## 在大多数情况下,可以通过 LRU 算法在各 CF 间自动平衡缓存用量。
  32. ##
  33. ## `storage.block-cache` 会话中的其余配置仅在开启 `shared block cache` 时起作用。
  34. # shared = true
  35. ## `shared block cache` 的大小。正常情况下应设置为系统全部内存的 30%-50%。
  36. ## 如果未设置该参数,则由以下字段或其默认值的总和决定。
  37. ##
  38. ## * rocksdb.defaultcf.block-cache-size 或系统全部内存的 25%
  39. ## * rocksdb.writecf.block-cache-size 或系统全部内存的 15%
  40. ## * rocksdb.lockcf.block-cache-size 或系统全部内存的 2%
  41. ## * raftdb.defaultcf.block-cache-size 或系统全部内存的 2%
  42. ##
  43. ## 要在单个物理机上部署多个 TiKV 节点,需要显式配置该参数。
  44. ## 否则,TiKV 中可能会出现 OOM 错误。
  45. # capacity = "1GB"
  46. [pd]
  47. # pd 的地址
  48. # endpoints = ["127.0.0.1:2379","127.0.0.2:2379","127.0.0.3:2379"]
  49. [metric]
  50. # 将 metrics 推送给 Prometheus pushgateway 的时间间隔
  51. interval = "15s"
  52. # Prometheus pushgateway 的地址
  53. address = ""
  54. job = "tikv"
  55. [raftstore]
  56. # 默认为 true,表示强制将数据刷到磁盘上。如果是非金融安全级别的业务场景,建议设置成 false,
  57. # 以便获得更高的性能。
  58. sync-log = true
  59. # Raft RocksDB 目录。默认值是 [storage.data-dir] 的 raft 子目录。
  60. # 如果机器上有多块磁盘,可以将 Raft RocksDB 的数据放在不同的盘上,提高 TiKV 的性能。
  61. # raftdb-dir = "/tmp/tikv/store/raft"
  62. region-max-size = "384MB"
  63. # Region 分裂阈值
  64. region-split-size = "256MB"
  65. # 当 Region 写入的数据量超过该阈值的时候,TiKV 会检查该 Region 是否需要分裂。为了减少检查过程
  66. # 中扫描数据的成本,数据过程中可以将该值设置为32MB,正常运行状态下使用默认值即可。
  67. region-split-check-diff = "32MB"
  68. [rocksdb]
  69. # RocksDB 进行后台任务的最大线程数,后台任务包括 compaction 和 flush。具体 RocksDB 为什么需要进行 compaction,
  70. # 请参考 RocksDB 的相关资料。在写流量比较大的时候(例如导数据),建议开启更多的线程,
  71. # 但应小于 CPU 的核数。例如在导数据的时候,32 核 CPU 的机器,可以设置成 28。
  72. # max-background-jobs = 8
  73. # RocksDB 能够打开的最大文件句柄数。
  74. # max-open-files = 40960
  75. # RocksDB MANIFEST 文件的大小限制.
# 更详细的信息请参考:https://github.com/facebook/rocksdb/wiki/MANIFEST
  76. max-manifest-file-size = "20MB"
  77. # RocksDB write-ahead logs 目录。如果机器上有两块盘,可以将 RocksDB 的数据和 WAL 日志放在
  78. # 不同的盘上,提高 TiKV 的性能。
  79. # wal-dir = "/tmp/tikv/store"
  80. # 下面两个参数用于怎样处理 RocksDB 归档 WAL。
  81. # 更多详细信息请参考:https://github.com/facebook/rocksdb/wiki/How-to-persist-in-memory-RocksDB-database%3F
  82. # wal-ttl-seconds = 0
  83. # wal-size-limit = 0
  84. # RocksDB WAL 日志的最大总大小,通常情况下使用默认值就可以了。
  85. # max-total-wal-size = "4GB"
  86. # 可以通过该参数打开或者关闭 RocksDB 的统计信息。
  87. # enable-statistics = true
  88. # 开启 RocksDB compaction 过程中的预读功能,如果使用的是机械磁盘,建议该值至少为2MB。
  89. # compaction-readahead-size = "2MB"
  90. [rocksdb.defaultcf]
  91. # 数据块大小。RocksDB 是按照 block 为单元对数据进行压缩的,同时 block 也是缓存在 block-cache
  92. # 中的最小单元(类似其他数据库的 page 概念)。
  93. block-size = "64KB"
  94. # RocksDB 每一层数据的压缩方式,可选的值为:no,snappy,zlib,bzip2,lz4,lz4hc,zstd。
  95. # no:no:lz4:lz4:lz4:zstd:zstd 表示 level0 和 level1 不压缩,level2 到 level4 采用 lz4 压缩算法,
  96. # level5 和 level6 采用 zstd 压缩算法,。
  97. # no 表示没有压缩,lz4 是速度和压缩比较为中庸的压缩算法,zlib 的压缩比很高,对存储空间比较友
  98. # 好,但是压缩速度比较慢,压缩的时候需要占用较多的 CPU 资源。不同的机器需要根据 CPU 以及 I/O 资
  99. # 源情况来配置怎样的压缩方式。例如:如果采用的压缩方式为"no:no:lz4:lz4:lz4:zstd:zstd",在大量
  100. # 写入数据的情况下(导数据),发现系统的 I/O 压力很大(使用 iostat 发现 %util 持续 100% 或者使
  101. # 用 top 命令发现 iowait 特别多),而 CPU 的资源还比较充裕,这个时候可以考虑将 level0 和
  102. # level1 开启压缩,用 CPU 资源换取 I/O 资源。如果采用的压缩方式
  103. # 为"no:no:lz4:lz4:lz4:zstd:zstd",在大量写入数据的情况下,发现系统的 I/O 压力不大,但是 CPU
  104. # 资源已经吃光了,top -H 发现有大量的 bg 开头的线程(RocksDB 的 compaction 线程)在运行,这
  105. # 个时候可以考虑用 I/O 资源换取 CPU 资源,将压缩方式改成"no:no:no:lz4:lz4:zstd:zstd"。总之,目
  106. # 的是为了最大限度地利用系统的现有资源,使 TiKV 的性能在现有的资源情况下充分发挥。
  107. compression-per-level = ["no", "no", "lz4", "lz4", "lz4", "zstd", "zstd"]
  108. # RocksDB memtable 的大小。
  109. write-buffer-size = "128MB"
  110. # 最多允许几个 memtable 存在。写入到 RocksDB 的数据首先会记录到 WAL 日志里面,然后会插入到
  111. # memtable 里面,当 memtable 的大小到达了 write-buffer-size 限定的大小的时候,当前的
  112. # memtable 会变成只读的,然后生成一个新的 memtable 接收新的写入。只读的 memtable 会被
  113. # RocksDB 的 flush 线程(max-background-flushes 参数能够控制 flush 线程的最大个数)
  114. # flush 到磁盘,成为 level0 的一个 sst 文件。当 flush 线程忙不过来,导致等待 flush 到磁盘的
  115. # memtable 的数量到达 max-write-buffer-number 限定的个数的时候,RocksDB 会将新的写入
  116. # stall 住,stall 是 RocksDB 的一种流控机制。在导数据的时候可以将 max-write-buffer-number
  117. # 的值设置的更大一点,例如 10。
  118. max-write-buffer-number = 5
  119. # 当 level0 的 sst 文件个数到达 level0-slowdown-writes-trigger 指定的限度的时候,
  120. # RocksDB 会尝试减慢写入的速度。因为 level0 的 sst 太多会导致 RocksDB 的读放大上升。
  121. # level0-slowdown-writes-trigger 和 level0-stop-writes-trigger 是 RocksDB 进行流控的
  122. # 另一个表现。当 level0 的 sst 的文件个数到达 4(默认值),level0 的 sst 文件会和 level1 中
  123. # 有 overlap 的 sst 文件进行 compaction,缓解读放大的问题。
  124. level0-slowdown-writes-trigger = 20
  125. # 当 level0 的 sst 文件个数到达 level0-stop-writes-trigger 指定的限度的时候,RocksDB 会
  126. # stall 住新的写入。
  127. level0-stop-writes-trigger = 36
  128. # 当 level1 的数据量大小达到 max-bytes-for-level-base 限定的值的时候,会触发 level1 的
  129. # sst 和 level2 种有 overlap 的 sst 进行 compaction。
  130. # 黄金定律:max-bytes-for-level-base 的设置的第一参考原则就是保证和 level0 的数据量大致相
  131. # 等,这样能够减少不必要的 compaction。例如压缩方式为"no:no:lz4:lz4:lz4:lz4:lz4",那么
  132. # max-bytes-for-level-base 的值应该是 write-buffer-size 的大小乘以 4,因为 level0 和
  133. # level1 都没有压缩,而且 level0 触发 compaction 的条件是 sst 的个数到达 4(默认值)。在
  134. # level0 和 level1 都采取了压缩的情况下,就需要分析下 RocksDB 的日志,看一个 memtable 的压
  135. # 缩成一个 sst 文件的大小大概是多少,例如 32MB,那么 max-bytes-for-level-base 的建议值就应
  136. # 该是 32MB * 4 = 128MB。
  137. max-bytes-for-level-base = "512MB"
  138. # sst 文件的大小。level0 的 sst 文件的大小受 write-buffer-size 和 level0 采用的压缩算法的
  139. # 影响,target-file-size-base 参数用于控制 level1-level6 单个 sst 文件的大小。
  140. target-file-size-base = "32MB"
  141. [rocksdb.writecf]
  142. # 保持和 rocksdb.defaultcf.compression-per-level 一致。
  143. compression-per-level = ["no", "no", "lz4", "lz4", "lz4", "zstd", "zstd"]
  144. # 保持和 rocksdb.defaultcf.write-buffer-size 一致。
  145. write-buffer-size = "128MB"
  146. max-write-buffer-number = 5
  147. min-write-buffer-number-to-merge = 1
  148. # 保持和 rocksdb.defaultcf.max-bytes-for-level-base 一致。
  149. max-bytes-for-level-base = "512MB"
  150. target-file-size-base = "32MB"
  151. [raftdb]
  152. # RaftDB 能够打开的最大文件句柄数。
  153. # max-open-files = 40960
  154. # 可以通过该参数打开或者关闭 RaftDB 的统计信息。
  155. # enable-statistics = true
  156. # 开启 RaftDB compaction 过程中的预读功能,如果使用的是机械磁盘,建议该值至少为2MB。
  157. # compaction-readahead-size = "2MB"
  158. [raftdb.defaultcf]
  159. # 保持和 rocksdb.defaultcf.compression-per-level 一致。
  160. compression-per-level = ["no", "no", "lz4", "lz4", "lz4", "zstd", "zstd"]
  161. # 保持和 rocksdb.defaultcf.write-buffer-size 一致。
  162. write-buffer-size = "128MB"
  163. max-write-buffer-number = 5
  164. min-write-buffer-number-to-merge = 1
  165. # 保持和 rocksdb.defaultcf.max-bytes-for-level-base 一致。
  166. max-bytes-for-level-base = "512MB"
  167. target-file-size-base = "32MB"

TiKV 内存使用情况

除了以上列出的 block-cache 以及 write-buffer 会占用系统内存外:

  1. 需预留一些内存作为系统的 page cache
  2. TiKV 在处理大的查询的时候(例如 select * from ...)会读取数据然后在内存中生成对应的数据结构返回给 TiDB,这个过程中 TiKV 会占用一部分内存

TiKV 机器配置推荐

  1. 生产环境中,不建议将 TiKV 部署在 CPU 核数小于 8 或内存低于 32GB 的机器上
  2. 如果对写入吞吐要求比较高,建议使用吞吐能力比较好的磁盘
  3. 如果对读写的延迟要求非常高,建议使用 IOPS 比较高的 SSD 盘