11.1 接口是什么

Go 语言不是一种 “传统” 的面向对象编程语言:它里面没有类和继承的概念。

但是 Go 语言里有非常灵活的 接口 概念,通过它可以实现很多面向对象的特性。接口提供了一种方式来 说明 对象的行为:如果谁能搞定这件事,它就可以用在这儿。

接口定义了一组方法(方法集),但是这些方法不包含(实现)代码:它们没有被实现(它们是抽象的)。接口里也不能包含变量。

通过如下格式定义接口:

  1. type Namer interface {
  2. Method1(param_list) return_type
  3. Method2(param_list) return_type
  4. ...
  5. }

上面的 Namer 是一个 接口类型

(按照约定,只包含一个方法的)接口的名字由方法名加 er 后缀组成,例如 PrinterReaderWriterLoggerConverter 等等。还有一些不常用的方式(当后缀 er 不合适时),比如 Recoverable,此时接口名以 able 结尾,或者以 I 开头(像 .NETJava 中那样)。

Go 语言中的接口都很简短,通常它们会包含 0 个、最多 3 个方法。

不像大多数面向对象编程语言,在 Go 语言中接口可以有值,一个接口类型的变量或一个 接口值var ai Namerai 是一个多字(multiword)数据结构,它的值是 nil。它本质上是一个指针,虽然不完全是一回事。指向接口值的指针是非法的,它们不仅一点用也没有,还会导致代码错误。

11.1 接口是什么 - 图1

此处的方法指针表是通过运行时反射能力构建的。

类型(比如结构体)可以实现某个接口的方法集;这个实现可以描述为,该类型的变量上的每一个具体方法所组成的集合,包含了该接口的方法集。实现了 Namer 接口的类型的变量可以赋值给 ai(即 receiver 的值),方法表指针(method table ptr)就指向了当前的方法实现。当另一个实现了 Namer 接口的类型的变量被赋给 aireceiver 的值和方法表指针也会相应改变。

类型不需要显式声明它实现了某个接口:接口被隐式地实现。多个类型可以实现同一个接口

实现某个接口的类型(除了实现接口方法外)可以有其他的方法

一个类型可以实现多个接口

接口类型可以包含一个实例的引用, 该实例的类型实现了此接口(接口是动态类型)

即使接口在类型之后才定义,二者处于不同的包中,被单独编译:只要类型实现了接口中的方法,它就实现了此接口。

所有这些特性使得接口具有很大的灵活性。

第一个例子:

示例 11.1 interfaces.go

  1. package main
  2. import "fmt"
  3. type Shaper interface {
  4. Area() float32
  5. }
  6. type Square struct {
  7. side float32
  8. }
  9. func (sq *Square) Area() float32 {
  10. return sq.side * sq.side
  11. }
  12. func main() {
  13. sq1 := new(Square)
  14. sq1.side = 5
  15. var areaIntf Shaper
  16. areaIntf = sq1
  17. // shorter,without separate declaration:
  18. // areaIntf := Shaper(sq1)
  19. // or even:
  20. // areaIntf := sq1
  21. fmt.Printf("The square has area: %f\n", areaIntf.Area())
  22. }

输出:

  1. The square has area: 25.000000

上面的程序定义了一个结构体 Square 和一个接口 Shaper,接口有一个方法 Area()

main() 方法中创建了一个 Square 的实例。在主程序外边定义了一个接收者类型是 Square 方法的 Area(),用来计算正方形的面积:结构体 Square 实现了接口 Shaper

所以可以将一个 Square 类型的变量赋值给一个接口类型的变量:areaIntf = sq1

现在接口变量包含一个指向 Square 变量的引用,通过它可以调用 Square 上的方法 Area()。当然也可以直接在 Square 的实例上调用此方法,但是在接口实例上调用此方法更令人兴奋,它使此方法更具有一般性。接口变量里包含了接收者实例的值和指向对应方法表的指针。

这是 多态 的 Go 版本,多态是面向对象编程中一个广为人知的概念:根据当前的类型选择正确的方法,或者说:同一种类型在不同的实例上似乎表现出不同的行为。

如果 Square 没有实现 Area() 方法,编译器将会给出清晰的错误信息:

  1. cannot use sq1 (type *Square) as type Shaper in assignment:
  2. *Square does not implement Shaper (missing Area method)

如果 Shaper 有另外一个方法 Perimeter(),但是 Square 没有实现它,即使没有人在 Square 实例上调用这个方法,编译器也会给出上面同样的错误。

扩展一下上面的例子,类型 Rectangle 也实现了 Shaper 接口。接着创建一个 Shaper 类型的数组,迭代它的每一个元素并在上面调用 Area() 方法,以此来展示多态行为:

示例 11.2 interfaces_poly.go

  1. package main
  2. import "fmt"
  3. type Shaper interface {
  4. Area() float32
  5. }
  6. type Square struct {
  7. side float32
  8. }
  9. func (sq *Square) Area() float32 {
  10. return sq.side * sq.side
  11. }
  12. type Rectangle struct {
  13. length, width float32
  14. }
  15. func (r Rectangle) Area() float32 {
  16. return r.length * r.width
  17. }
  18. func main() {
  19. r := Rectangle{5, 3} // Area() of Rectangle needs a value
  20. q := &Square{5} // Area() of Square needs a pointer
  21. // shapes := []Shaper{Shaper(r), Shaper(q)}
  22. // or shorter
  23. shapes := []Shaper{r, q}
  24. fmt.Println("Looping through shapes for area ...")
  25. for n, _ := range shapes {
  26. fmt.Println("Shape details: ", shapes[n])
  27. fmt.Println("Area of this shape is: ", shapes[n].Area())
  28. }
  29. }

输出:

  1. Looping through shapes for area ...
  2. Shape details: {5 3}
  3. Area of this shape is: 15
  4. Shape details: &{5}
  5. Area of this shape is: 25

在调用 shapes[n].Area() 这个时,只知道 shapes[n] 是一个 Shaper 对象,最后它摇身一变成为了一个 SquareRectangle 对象,并且表现出了相对应的行为。

也许从现在开始你将看到通过接口如何产生 更干净更简单更具有扩展性 的代码。在 11.12.3 中将看到在开发中为类型添加新的接口是多么的容易。

下面是一个更具体的例子:有两个类型 stockPositioncar,它们都有一个 getValue() 方法,我们可以定义一个具有此方法的接口 valuable。接着定义一个使用 valuable 类型作为参数的函数 showValue(),所有实现了 valuable 接口的类型都可以用这个函数。

示例 11.3 valuable.go

  1. package main
  2. import "fmt"
  3. type stockPosition struct {
  4. ticker string
  5. sharePrice float32
  6. count float32
  7. }
  8. /* method to determine the value of a stock position */
  9. func (s stockPosition) getValue() float32 {
  10. return s.sharePrice * s.count
  11. }
  12. type car struct {
  13. make string
  14. model string
  15. price float32
  16. }
  17. /* method to determine the value of a car */
  18. func (c car) getValue() float32 {
  19. return c.price
  20. }
  21. /* contract that defines different things that have value */
  22. type valuable interface {
  23. getValue() float32
  24. }
  25. func showValue(asset valuable) {
  26. fmt.Printf("Value of the asset is %f\n", asset.getValue())
  27. }
  28. func main() {
  29. var o valuable = stockPosition{"GOOG", 577.20, 4}
  30. showValue(o)
  31. o = car{"BMW", "M3", 66500}
  32. showValue(o)
  33. }

输出:

  1. Value of the asset is 2308.800049
  2. Value of the asset is 66500.000000

一个标准库的例子

io 包里有一个接口类型 Reader:

  1. type Reader interface {
  2. Read(p []byte) (n int, err error)
  3. }

定义变量 rvar r io.Reader

那么就可以写如下的代码:

  1. var r io.Reader
  2. r = os.Stdin // see 12.1
  3. r = bufio.NewReader(r)
  4. r = new(bytes.Buffer)
  5. f,_ := os.Open("test.txt")
  6. r = bufio.NewReader(f)

上面 r 右边的类型都实现了 Read() 方法,并且有相同的方法签名,r 的静态类型是 io.Reader

备注

有的时候,也会以一种稍微不同的方式来使用接口这个词:从某个类型的角度来看,它的接口指的是:它的所有导出方法,只不过没有显式地为这些导出方法额外定一个接口而已。

练习 11.1 simple_interface.go

定义一个接口 Simpler,它有一个 Get() 方法和一个 Set()Get() 返回一个整型值,Set() 有一个整型参数。创建一个结构体类型 Simple 实现这个接口。

接着定一个函数,它有一个 Simpler 类型的参数,调用参数的 Get()Set() 方法。在 main 函数里调用这个函数,看看它是否可以正确运行。

练习 11.2 interfaces_poly2.go

a) 扩展 interfaces_poly.go 中的例子,添加一个 Circle 类型

b) 使用一个抽象类型 Shape(没有字段) 实现同样的功能,它实现接口 Shaper,然后在其他类型里内嵌此类型。扩展 10.6.5 中的例子来说明覆写。

链接