In [ ]:

  1. #hide
  2. !pip install -Uqq fastbook
  3. import fastbook
  4. fastbook.setup_book()

In [ ]:

  1. #hide
  2. from fastbook import *

[[chapter_resnet]]

ResNets

In this chapter, we will build on top of the CNNs introduced in the previous chapter and explain to you the ResNet (residual network) architecture. It was introduced in 2015 by Kaiming He et al. in the article “Deep Residual Learning for Image Recognition” and is by far the most used model architecture nowadays. More recent developments in image models almost always use the same trick of residual connections, and most of the time, they are just a tweak of the original ResNet.

We will first show you the basic ResNet as it was first designed, then explain to you what modern tweaks make it more performant. But first, we will need a problem a little bit more difficult than the MNIST dataset, since we are already close to 100% accuracy with a regular CNN on it.