Indexable
Define attributes on ORM-mapped classes that have “index” attributes forcolumns with Indexable
types.
“index” means the attribute is associated with an element of anIndexable
column with the predefined index to access it.The Indexable
types include types such asARRAY
, JSON
andHSTORE
.
The indexable
extension providesColumn
-like interface for any element of anIndexable
typed column. In simple cases, it can betreated as a Column
- mapped attribute.
New in version 1.1.
Synopsis
Given Person
as a model with a primary key and JSON data field.While this field may have any number of elements encoded within it,we would like to refer to the element called name
individuallyas a dedicated attribute which behaves like a standalone column:
- from sqlalchemy import Column, JSON, Integer
- from sqlalchemy.ext.declarative import declarative_base
- from sqlalchemy.ext.indexable import index_property
- Base = declarative_base()
- class Person(Base):
- __tablename__ = 'person'
- id = Column(Integer, primary_key=True)
- data = Column(JSON)
- name = index_property('data', 'name')
Above, the name
attribute now behaves like a mapped column. Wecan compose a new Person
and set the value of name
:
- >>> person = Person(name='Alchemist')
The value is now accessible:
- >>> person.name
- 'Alchemist'
Behind the scenes, the JSON field was initialized to a new blank dictionaryand the field was set:
- >>> person.data
- {"name": "Alchemist'}
The field is mutable in place:
- >>> person.name = 'Renamed'
- >>> person.name
- 'Renamed'
- >>> person.data
- {'name': 'Renamed'}
When using index_property
, the change that we make to the indexablestructure is also automatically tracked as history; we no longer needto use MutableDict
in order to track this changefor the unit of work.
Deletions work normally as well:
- >>> del person.name
- >>> person.data
- {}
Above, deletion of person.name
deletes the value from the dictionary,but not the dictionary itself.
A missing key will produce AttributeError
:
- >>> person = Person()
- >>> person.name
- ...
- AttributeError: 'name'
Unless you set a default value:
- >>> class Person(Base):
- >>> __tablename__ = 'person'
- >>>
- >>> id = Column(Integer, primary_key=True)
- >>> data = Column(JSON)
- >>>
- >>> name = index_property('data', 'name', default=None) # See default
- >>> person = Person()
- >>> print(person.name)
- None
The attributes are also accessible at the class level.Below, we illustrate Person.name
used to generatean indexed SQL criteria:
- >>> from sqlalchemy.orm import Session
- >>> session = Session()
- >>> query = session.query(Person).filter(Person.name == 'Alchemist')
The above query is equivalent to:
- >>> query = session.query(Person).filter(Person.data['name'] == 'Alchemist')
Multiple index_property
objects can be chained to producemultiple levels of indexing:
- from sqlalchemy import Column, JSON, Integer
- from sqlalchemy.ext.declarative import declarative_base
- from sqlalchemy.ext.indexable import index_property
- Base = declarative_base()
- class Person(Base):
- __tablename__ = 'person'
- id = Column(Integer, primary_key=True)
- data = Column(JSON)
- birthday = index_property('data', 'birthday')
- year = index_property('birthday', 'year')
- month = index_property('birthday', 'month')
- day = index_property('birthday', 'day')
Above, a query such as:
- q = session.query(Person).filter(Person.year == '1980')
On a PostgreSQL backend, the above query will render as:
- SELECT person.id, person.data
- FROM person
- WHERE person.data -> %(data_1)s -> %(param_1)s = %(param_2)s
Default Values
index_property
includes special behaviors for when the indexeddata structure does not exist, and a set operation is called:
For an
index_property
that is given an integer index value,the default data structure will be a Python list ofNone
values,at least as long as the index value; the value is then set at itsplace in the list. This means for an index value of zero, the listwill be initialized to[None]
before setting the given value,and for an index value of five, the list will be initialized to[None, None, None, None, None]
before setting the fifth elementto the given value. Note that an existing list is not extendedin place to receive a value.for an
index_property
that is given any other kind of indexvalue (e.g. strings usually), a Python dictionary is used as thedefault data structure.The default data structure can be set to any Python callable using the
index_property.datatype
parameter, overriding the previousrules.
Subclassing
index_property
can be subclassed, in particular for the commonuse case of providing coercion of values or SQL expressions as they areaccessed. Below is a common recipe for use with a PostgreSQL JSON type,where we want to also include automatic casting plus astext()
:
- class pg_json_property(index_property):
- def __init__(self, attr_name, index, cast_type):
- super(pg_json_property, self).__init__(attr_name, index)
- self.cast_type = cast_type
- def expr(self, model):
- expr = super(pg_json_property, self).expr(model)
- return expr.astext.cast(self.cast_type)
The above subclass can be used with the PostgreSQL-specificversion of postgresql.JSON
:
- from sqlalchemy import Column, Integer
- from sqlalchemy.ext.declarative import declarative_base
- from sqlalchemy.dialects.postgresql import JSON
- Base = declarative_base()
- class Person(Base):
- __tablename__ = 'person'
- id = Column(Integer, primary_key=True)
- data = Column(JSON)
- age = pg_json_property('data', 'age', Integer)
The age
attribute at the instance level works as before; howeverwhen rendering SQL, PostgreSQL’s ->>
operator will be usedfor indexed access, instead of the usual index operator of ->
:
- >>> query = session.query(Person).filter(Person.age < 20)
The above query will render:
- SELECT person.id, person.data
- FROM person
- WHERE CAST(person.data ->> %(data_1)s AS INTEGER) < %(param_1)s
API Reference
- class
sqlalchemy.ext.indexable.
indexproperty
(_attr_name, index, default=