带权最小二乘
1 原理
给定n个带权的观察样本$(w_i,a_i,b_i)$:
- $w_i$表示第i个观察样本的权重;
- $a_i$表示第i个观察样本的特征向量;
- $b_i$表示第i个观察样本的标签。
每个观察样本的特征数是m。我们使用下面的带权最小二乘公式作为目标函数:
minimize{x}\frac{1}{2} \sum{i=1}^n \frac{wi(a_i^T x -b_i)^2}{\sum{k=1}^n wk} + \frac{1}{2}\frac{\lambda}{\delta}\sum{j=1}^m(\sigma{j} x{j})^2
其中$\lambda$是正则化参数,$\delta$是标签的总体标准差,$\sigma_j$是第j个特征列的总体标准差。
这个目标函数有一个解析解法,它仅仅需要一次处理样本来搜集必要的统计数据去求解。与原始数据集必须存储在分布式系统上不同,
如果特征数相对较小,这些统计数据可以加载进单机的内存中,然后在driver
端使用乔里斯基分解求解目标函数。
spark ml
中使用WeightedLeastSquares
求解带权最小二乘问题。WeightedLeastSquares
仅仅支持L2
正则化,并且提供了正则化和标准化
的开关。为了使正太方程(normal equation
)方法有效,特征数不能超过4096。如果超过4096,用L-BFGS
代替。下面从代码层面介绍带权最小二乘优化算法
的实现。
2 代码解析
我们首先看看WeightedLeastSquares
的参数及其含义。
private[ml] class WeightedLeastSquares(
val fitIntercept: Boolean, //是否使用截距
val regParam: Double, //L2正则化参数,指上面公式中的lambda
val elasticNetParam: Double, // alpha,控制L1和L2正则化
val standardizeFeatures: Boolean, // 是否标准化特征
val standardizeLabel: Boolean, // 是否标准化标签
val solverType: WeightedLeastSquares.Solver = WeightedLeastSquares.Auto,
val maxIter: Int = 100, // 迭代次数
val tol: Double = 1e-6) extends Logging with Serializable
sealed trait Solver
case object Auto extends Solver
case object Cholesky extends Solver
case object QuasiNewton extends Solver
在上面的代码中,standardizeFeatures
决定是否标准化特征,如果为真,则$\sigma_j$是A第j个特征列的总体标准差,否则$\sigma_j$为1。standardizeLabel
决定是否标准化标签,如果为真,则$\delta$是标签b的总体标准差,否则$\delta$为1。solverType
指定求解的类型,有Auto
,Cholesky
和QuasiNewton
三种选择。tol
表示迭代的收敛阈值,仅仅在solverType
为QuasiNewton
时可用。
2.1 求解过程
WeightedLeastSquares
接收一个包含(标签,权重,特征)的RDD
,使用fit
方法训练,并返回WeightedLeastSquaresModel
。
def fit(instances: RDD[Instance]): WeightedLeastSquaresModel
训练过程分为下面几步。
- 1 统计样本信息
val summary = instances.treeAggregate(new Aggregator)(_.add(_), _.merge(_))
使用treeAggregate
方法来统计样本信息。统计的信息在Aggregator
类中给出了定义。通过展开上面的目标函数,我们可以知道这些统计信息的含义。
private class Aggregator extends Serializable {
var initialized: Boolean = false
var k: Int = _ // 特征数
var count: Long = _ // 样本数
var triK: Int = _ // 对角矩阵保存的元素个数
var wSum: Double = _ // 权重和
private var wwSum: Double = _ // 权重的平方和
private var bSum: Double = _ // 带权标签和
private var bbSum: Double = _ // 带权标签的平方和
private var aSum: DenseVector = _ // 带权特征和
private var abSum: DenseVector = _ // 带权特征标签相乘和
private var aaSum: DenseVector = _ // 带权特征平方和
}
方法add
添加样本的统计信息,方法merge
合并不同分区的统计信息。代码很简单,如下所示:
/**
* Adds an instance.
*/
def add(instance: Instance): this.type = {
val Instance(l, w, f) = instance
val ak = f.size
if (!initialized) {
init(ak)
}
assert(ak == k, s"Dimension mismatch. Expect vectors of size $k but got $ak.")
count += 1L
wSum += w
wwSum += w * w
bSum += w * l
bbSum += w * l * l
BLAS.axpy(w, f, aSum)
BLAS.axpy(w * l, f, abSum)
BLAS.spr(w, f, aaSum) // wff^T
this
}
/**
* Merges another [[Aggregator]].
*/
def merge(other: Aggregator): this.type = {
if (!other.initialized) {
this
} else {
if (!initialized) {
init(other.k)
}
assert(k == other.k, s"dimension mismatch: this.k = $k but other.k = ${other.k}")
count += other.count
wSum += other.wSum
wwSum += other.wwSum
bSum += other.bSum
bbSum += other.bbSum
BLAS.axpy(1.0, other.aSum, aSum)
BLAS.axpy(1.0, other.abSum, abSum)
BLAS.axpy(1.0, other.aaSum, aaSum)
this
}
Aggregator
类给出了以下一些统计信息:
aBar: 特征加权平均数
bBar: 标签加权平均数
aaBar: 特征平方加权平均数
bbBar: 标签平方加权平均数
aStd: 特征的加权总体标准差
bStd: 标签的加权总体标准差
aVar: 带权的特征总体方差
计算出这些信息之后,将均值缩放到标准空间,即使每列数据的方差为1。
// 缩放bBar和 bbBar
val bBar = summary.bBar / bStd
val bbBar = summary.bbBar / (bStd * bStd)
val aStd = summary.aStd
val aStdValues = aStd.values
// 缩放aBar
val aBar = {
val _aBar = summary.aBar
val _aBarValues = _aBar.values
var i = 0
// scale aBar to standardized space in-place
while (i < numFeatures) {
if (aStdValues(i) == 0.0) {
_aBarValues(i) = 0.0
} else {
_aBarValues(i) /= aStdValues(i)
}
i += 1
}
_aBar
}
val aBarValues = aBar.values
// 缩放 abBar
val abBar = {
val _abBar = summary.abBar
val _abBarValues = _abBar.values
var i = 0
// scale abBar to standardized space in-place
while (i < numFeatures) {
if (aStdValues(i) == 0.0) {
_abBarValues(i) = 0.0
} else {
_abBarValues(i) /= (aStdValues(i) * bStd)
}
i += 1
}
_abBar
}
val abBarValues = abBar.values
// 缩放aaBar
val aaBar = {
val _aaBar = summary.aaBar
val _aaBarValues = _aaBar.values
var j = 0
var p = 0
// scale aaBar to standardized space in-place
while (j < numFeatures) {
val aStdJ = aStdValues(j)
var i = 0
while (i <= j) {
val aStdI = aStdValues(i)
if (aStdJ == 0.0 || aStdI == 0.0) {
_aaBarValues(p) = 0.0
} else {
_aaBarValues(p) /= (aStdI * aStdJ)
}
p += 1
i += 1
}
j += 1
}
_aaBar
}
val aaBarValues = aaBar.values
- 2 处理L2正则项
val effectiveRegParam = regParam / bStd
val effectiveL1RegParam = elasticNetParam * effectiveRegParam
val effectiveL2RegParam = (1.0 - elasticNetParam) * effectiveRegParam
// 添加L2正则项到对角矩阵中
var i = 0
var j = 2
while (i < triK) {
var lambda = effectiveL2RegParam
if (!standardizeFeatures) {
val std = aStdValues(j - 2)
if (std != 0.0) {
lambda /= (std * std) //正则项标准化
} else {
lambda = 0.0
}
}
if (!standardizeLabel) {
lambda *= bStd
}
aaBarValues(i) += lambda
i += j
j += 1
}
- 3 选择solver
WeightedLeastSquares
实现了CholeskySolver
和QuasiNewtonSolver
两种不同的求解方法。当没有正则化项时,
选择CholeskySolver
求解,否则用QuasiNewtonSolver
求解。
val solver = if ((solverType == WeightedLeastSquares.Auto && elasticNetParam != 0.0 &&
regParam != 0.0) || (solverType == WeightedLeastSquares.QuasiNewton)) {
val effectiveL1RegFun: Option[(Int) => Double] = if (effectiveL1RegParam != 0.0) {
Some((index: Int) => {
if (fitIntercept && index == numFeatures) {
0.0
} else {
if (standardizeFeatures) {
effectiveL1RegParam
} else {
if (aStdValues(index) != 0.0) effectiveL1RegParam / aStdValues(index) else 0.0
}
}
})
} else {
None
}
new QuasiNewtonSolver(fitIntercept, maxIter, tol, effectiveL1RegFun)
} else {
new CholeskySolver
}
CholeskySolver
和QuasiNewtonSolver
的详细分析会在另外的专题进行描述。
- 4 处理结果
val solution = solver match {
case cholesky: CholeskySolver =>
try {
cholesky.solve(bBar, bbBar, ab, aa, aBar)
} catch {
// if Auto solver is used and Cholesky fails due to singular AtA, then fall back to
// Quasi-Newton solver.
case _: SingularMatrixException if solverType == WeightedLeastSquares.Auto =>
logWarning("Cholesky solver failed due to singular covariance matrix. " +
"Retrying with Quasi-Newton solver.")
// ab and aa were modified in place, so reconstruct them
val _aa = getAtA(aaBarValues, aBarValues)
val _ab = getAtB(abBarValues, bBar)
val newSolver = new QuasiNewtonSolver(fitIntercept, maxIter, tol, None)
newSolver.solve(bBar, bbBar, _ab, _aa, aBar)
}
case qn: QuasiNewtonSolver =>
qn.solve(bBar, bbBar, ab, aa, aBar)
}
val (coefficientArray, intercept) = if (fitIntercept) {
(solution.coefficients.slice(0, solution.coefficients.length - 1),
solution.coefficients.last * bStd)
} else {
(solution.coefficients, 0.0)
}
上面代码的异常处理需要注意一下。在AtA
是奇异矩阵的情况下,乔里斯基分解会报错,这时需要用拟牛顿方法求解。
以上的结果是在标准空间中,所以我们需要将结果从标准空间转换到原来的空间。
// convert the coefficients from the scaled space to the original space
var q = 0
val len = coefficientArray.length
while (q < len) {
coefficientArray(q) *= { if (aStdValues(q) != 0.0) bStd / aStdValues(q) else 0.0 }
q += 1
}