User Defined Aggregate Functions (UDAFs)
Description
User-Defined Aggregate Functions (UDAFs) are user-programmable routines that act on multiple rows at once and return a single aggregated value as a result. This documentation lists the classes that are required for creating and registering UDAFs. It also contains examples that demonstrate how to define and register UDAFs in Scala and invoke them in Spark SQL.
Aggregator[-IN, BUF, OUT]
A base class for user-defined aggregations, which can be used in Dataset operations to take all of the elements of a group and reduce them to a single value.
IN - The input type for the aggregation.
BUF - The type of the intermediate value of the reduction.
OUT - The type of the final output result.
bufferEncoder: Encoder[BUF]
Specifies the Encoder for the intermediate value type.
finish(reduction: BUF): OUT
Transform the output of the reduction.
merge(b1: BUF, b2: BUF): BUF
Merge two intermediate values.
outputEncoder: Encoder[OUT]
Specifies the Encoder for the final output value type.
reduce(b: BUF, a: IN): BUF
Aggregate input value
a
into current intermediate value. For performance, the function may modifyb
and return it instead of constructing new object forb
.zero: BUF
The initial value of the intermediate result for this aggregation.
Examples
Type-Safe User-Defined Aggregate Functions
User-defined aggregations for strongly typed Datasets revolve around the Aggregator abstract class. For example, a type-safe user-defined average can look like:
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
import org.apache.spark.sql.expressions.Aggregator
case class Employee(name: String, salary: Long)
case class Average(var sum: Long, var count: Long)
object MyAverage extends Aggregator[Employee, Average, Double] {
// A zero value for this aggregation. Should satisfy the property that any b + zero = b
def zero: Average = Average(0L, 0L)
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
def reduce(buffer: Average, employee: Employee): Average = {
buffer.sum += employee.salary
buffer.count += 1
buffer
}
// Merge two intermediate values
def merge(b1: Average, b2: Average): Average = {
b1.sum += b2.sum
b1.count += b2.count
b1
}
// Transform the output of the reduction
def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
// Specifies the Encoder for the intermediate value type
def bufferEncoder: Encoder[Average] = Encoders.product
// Specifies the Encoder for the final output value type
def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
val ds = spark.read.json("examples/src/main/resources/employees.json").as[Employee]
ds.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
// Convert the function to a `TypedColumn` and give it a name
val averageSalary = MyAverage.toColumn.name("average_salary")
val result = ds.select(averageSalary)
result.show()
// +--------------+
// |average_salary|
// +--------------+
// | 3750.0|
// +--------------+
Find full example code at “examples/src/main/scala/org/apache/spark/examples/sql/UserDefinedTypedAggregation.scala” in the Spark repo.
import java.io.Serializable;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.TypedColumn;
import org.apache.spark.sql.expressions.Aggregator;
public static class Employee implements Serializable {
private String name;
private long salary;
// Constructors, getters, setters...
}
public static class Average implements Serializable {
private long sum;
private long count;
// Constructors, getters, setters...
}
public static class MyAverage extends Aggregator<Employee, Average, Double> {
// A zero value for this aggregation. Should satisfy the property that any b + zero = b
@Override
public Average zero() {
return new Average(0L, 0L);
}
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
@Override
public Average reduce(Average buffer, Employee employee) {
long newSum = buffer.getSum() + employee.getSalary();
long newCount = buffer.getCount() + 1;
buffer.setSum(newSum);
buffer.setCount(newCount);
return buffer;
}
// Merge two intermediate values
@Override
public Average merge(Average b1, Average b2) {
long mergedSum = b1.getSum() + b2.getSum();
long mergedCount = b1.getCount() + b2.getCount();
b1.setSum(mergedSum);
b1.setCount(mergedCount);
return b1;
}
// Transform the output of the reduction
@Override
public Double finish(Average reduction) {
return ((double) reduction.getSum()) / reduction.getCount();
}
// Specifies the Encoder for the intermediate value type
@Override
public Encoder<Average> bufferEncoder() {
return Encoders.bean(Average.class);
}
// Specifies the Encoder for the final output value type
@Override
public Encoder<Double> outputEncoder() {
return Encoders.DOUBLE();
}
}
Encoder<Employee> employeeEncoder = Encoders.bean(Employee.class);
String path = "examples/src/main/resources/employees.json";
Dataset<Employee> ds = spark.read().json(path).as(employeeEncoder);
ds.show();
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
MyAverage myAverage = new MyAverage();
// Convert the function to a `TypedColumn` and give it a name
TypedColumn<Employee, Double> averageSalary = myAverage.toColumn().name("average_salary");
Dataset<Double> result = ds.select(averageSalary);
result.show();
// +--------------+
// |average_salary|
// +--------------+
// | 3750.0|
// +--------------+
Find full example code at “examples/src/main/java/org/apache/spark/examples/sql/JavaUserDefinedTypedAggregation.java” in the Spark repo.
Untyped User-Defined Aggregate Functions
Typed aggregations, as described above, may also be registered as untyped aggregating UDFs for use with DataFrames. For example, a user-defined average for untyped DataFrames can look like:
import org.apache.spark.sql.{Encoder, Encoders, SparkSession}
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.functions
case class Average(var sum: Long, var count: Long)
object MyAverage extends Aggregator[Long, Average, Double] {
// A zero value for this aggregation. Should satisfy the property that any b + zero = b
def zero: Average = Average(0L, 0L)
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
def reduce(buffer: Average, data: Long): Average = {
buffer.sum += data
buffer.count += 1
buffer
}
// Merge two intermediate values
def merge(b1: Average, b2: Average): Average = {
b1.sum += b2.sum
b1.count += b2.count
b1
}
// Transform the output of the reduction
def finish(reduction: Average): Double = reduction.sum.toDouble / reduction.count
// Specifies the Encoder for the intermediate value type
def bufferEncoder: Encoder[Average] = Encoders.product
// Specifies the Encoder for the final output value type
def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
// Register the function to access it
spark.udf.register("myAverage", functions.udaf(MyAverage))
val df = spark.read.json("examples/src/main/resources/employees.json")
df.createOrReplaceTempView("employees")
df.show()
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
val result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees")
result.show()
// +--------------+
// |average_salary|
// +--------------+
// | 3750.0|
// +--------------+
Find full example code at “examples/src/main/scala/org/apache/spark/examples/sql/UserDefinedUntypedAggregation.scala” in the Spark repo.
import java.io.Serializable;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoder;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.expressions.Aggregator;
import org.apache.spark.sql.functions;
public static class Average implements Serializable {
private long sum;
private long count;
// Constructors, getters, setters...
public Average() {
}
public Average(long sum, long count) {
this.sum = sum;
this.count = count;
}
public long getSum() {
return sum;
}
public void setSum(long sum) {
this.sum = sum;
}
public long getCount() {
return count;
}
public void setCount(long count) {
this.count = count;
}
}
public static class MyAverage extends Aggregator<Long, Average, Double> {
// A zero value for this aggregation. Should satisfy the property that any b + zero = b
@Override
public Average zero() {
return new Average(0L, 0L);
}
// Combine two values to produce a new value. For performance, the function may modify `buffer`
// and return it instead of constructing a new object
@Override
public Average reduce(Average buffer, Long data) {
long newSum = buffer.getSum() + data;
long newCount = buffer.getCount() + 1;
buffer.setSum(newSum);
buffer.setCount(newCount);
return buffer;
}
// Merge two intermediate values
@Override
public Average merge(Average b1, Average b2) {
long mergedSum = b1.getSum() + b2.getSum();
long mergedCount = b1.getCount() + b2.getCount();
b1.setSum(mergedSum);
b1.setCount(mergedCount);
return b1;
}
// Transform the output of the reduction
@Override
public Double finish(Average reduction) {
return ((double) reduction.getSum()) / reduction.getCount();
}
// Specifies the Encoder for the intermediate value type
@Override
public Encoder<Average> bufferEncoder() {
return Encoders.bean(Average.class);
}
// Specifies the Encoder for the final output value type
@Override
public Encoder<Double> outputEncoder() {
return Encoders.DOUBLE();
}
}
// Register the function to access it
spark.udf().register("myAverage", functions.udaf(new MyAverage(), Encoders.LONG()));
Dataset<Row> df = spark.read().json("examples/src/main/resources/employees.json");
df.createOrReplaceTempView("employees");
df.show();
// +-------+------+
// | name|salary|
// +-------+------+
// |Michael| 3000|
// | Andy| 4500|
// | Justin| 3500|
// | Berta| 4000|
// +-------+------+
Dataset<Row> result = spark.sql("SELECT myAverage(salary) as average_salary FROM employees");
result.show();
// +--------------+
// |average_salary|
// +--------------+
// | 3750.0|
// +--------------+
Find full example code at “examples/src/main/java/org/apache/spark/examples/sql/JavaUserDefinedUntypedAggregation.java” in the Spark repo.
-- Compile and place UDAF MyAverage in a JAR file called `MyAverage.jar` in /tmp.
CREATE FUNCTION myAverage AS 'MyAverage' USING JAR '/tmp/MyAverage.jar';
SHOW USER FUNCTIONS;
+------------------+
| function|
+------------------+
| default.myAverage|
+------------------+
CREATE TEMPORARY VIEW employees
USING org.apache.spark.sql.json
OPTIONS (
path "examples/src/main/resources/employees.json"
);
SELECT * FROM employees;
+-------+------+
| name|salary|
+-------+------+
|Michael| 3000|
| Andy| 4500|
| Justin| 3500|
| Berta| 4000|
+-------+------+
SELECT myAverage(salary) as average_salary FROM employees;
+--------------+
|average_salary|
+--------------+
| 3750.0|
+--------------+