3Sum Smaller
Given an array of n integers nums and a target, find the number of index triplets i, j, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
For example, given nums = [-2, 0, 1, 3]
, and target = 2.
Return 2. Because there are two triplets which sums are less than 2:
[-2, 0, 1]
[-2, 0, 3]
Follow up:
Could you solve it in O(n^2) runtime?
Solution:
public class Solution {
public int threeSumSmaller(int[] nums, int target) {
Arrays.sort(nums);
int n = nums.length, count = 0;
for (int i = 0; i < n - 2; i++) {
int j = i + 1, k = n - 1;
while (j < k) {
int sum = nums[i] + nums[j] + nums[k];
if (sum >= target) {
k--;
} else {
count += k - j;
j++;
}
}
}
return count;
}
}
Time complexity: O(n^2)