JDBC驱动
本文档将介绍 SparkSQL 通过 JDBC 驱动对接 SequoiaDB 巨杉数据库的示例。
SparkSQL连接SequoiaDB
SparkSQL 可以通过 JDBC 驱动连接 SequoiaDB 进行操作。
连接前准备
下载安装 Spark 和 SequoiaDB 数据库,将 Spark-SequoiaDB 连接组件和 SequoiaDB Java 驱动的 jar 包复制到 Spark 安装路径下的
jars
目录下新建一个 java 项目,并导入 sparkSQL 的 JDBC 驱动程序依赖包,可使用 maven 下载,参考配置如下:
<dependencies>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>$version</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>$version</version>
</dependency>
</dependencies>
示例
假设 SequoiaDB 存在集合 test.test,且保存数据如下:
> db.test.test.find()
{
"_id": {
"$oid": "5d5911f41125bc9c9aa2bc0b"
},
"c1": 0,
"c2": "mary",
"c3": 15
}
{
"_id": {
"$oid": "5d5912041125bc9c9aa2bc0c"
},
"c1": 1,
"c2": "lili",
"c3": 25
}
编写并执行示例代码
package com.spark.samples;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class HiveJdbcClient {
public static void main(String[] args) throws ClassNotFoundException {
//JDBC Driver程序的类名
Class.forName("org.apache.hive.jdbc.HiveDriver");
try {
//连接SparkSQL,假设spark服务所在主机名为sparkServer
Connection connection = DriverManager.getConnection("jdbc:hive2://sparkServer:10000/default", "", "");
System.out.println("connection success!");
Statement statement = connection.createStatement();
// 创建表,该表映射SequoiaDB中表test.test
String crtTableName = "test";
statement.execute("CREATE TABLE" + crtTableName
+ "( c1 int, c2 string, c3 int ) USING com.sequoiadb.spark OPTIONS ( host 'server1:11810,server2:11810', "
+ "collectionspace 'test', collection 'test',username '',password '')");
// 查询表test数据,返回sequoiaDB中test.test表中的数据信息
String sql = "select * from " + crtTableName;
System.out.println("Running:" + sql);
ResultSet resultSet = statement.executeQuery(sql);
while (resultSet.next()) {
System.out.println(
String.valueOf(resultSet.getString(1)) + "\t" + String.valueOf(resultSet.getString(2)));
}
statement.close();
connection.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
运行结果如下:
connection success!
Running:select * from test
1 lili 25
0 mary 15
SparkSQL对接SequoiaSQL
SparkSQL 可以通过 DataFrames 使用 JDBC 对 SequoiaSQL-MySQL 或 SequoiaSQL-PGSQL 进行读写操作。
对接前准备
下载相应的 JDBC 驱动,将其拷贝到 spark 集群
SPARK_HOME/jars
目录下在读实例执行创建测试库、测试用户、授权及准备数据,在写实例执行创建测试库、测试用户及授权
-- Create test database
create database sparktest;
-- Create a user representing your Spark cluster
create user 'sparktest'@'%' identified by 'sparktest';
-- Add privileges for the Spark cluster
grant create, delete, drop, insert, select, update on sparktest.* to 'sparktest'@'%';
flush privileges;
-- Create a test table of physical characteristics.
use sparktest;
create table people (
id int(10) not null auto_increment,
name char(50) not null,
is_male tinyint(1) not null,
height_in int(4) not null,
weight_lb int(4) not null,
primary key (id),
key (id)
);
-- Create sample data to load into a DataFrame
insert into people values (null, 'Alice', 0, 60, 125);
insert into people values (null, 'Brian', 1, 64, 131);
insert into people values (null, 'Charlie', 1, 74, 183);
insert into people values (null, 'Doris', 0, 58, 102);
insert into people values (null, 'Ellen', 0, 66, 140);
insert into people values (null, 'Frank', 1, 66, 151);
insert into people values (null, 'Gerard', 1, 68, 190);
insert into people values (null, 'Harold', 1, 61, 128);
示例
编写示例代码
package com.sequoiadb.test;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import java.io.File;
import java.io.FileInputStream;
import java.util.Properties;
public final class JDBCDemo {
public static void main(String[] args) throws Exception {
String readUrl = "jdbc:mysql://192.168.30.81/sparktest" ;
String writeUrl = "jdbc:mysql://192.168.30.82/sparktest" ;
SparkSession spark = SparkSession.builder().appName("JDBCDemo").getOrCreate();
Properties dbProperties = new Properties();
dbProperties.setProperty("user", "sparktest") ;
dbProperties.setProperty("password", "sparktest" );
System.out.println("A DataFrame loaded from the entire contents of a table over JDBC.");
String where = "sparktest.people";
Dataset<Row> entireDF = spark.read().jdbc(readUrl, where, dbProperties);
entireDF.printSchema();
entireDF.show();
System.out.println("Filtering the table to just show the males.");
entireDF.filter("is_male = 1").show();
System.out.println("Alternately, pre-filter the table for males before loading over JDBC.");
where = "(select * from sparktest.people where is_male = 1) as subset";
Dataset<Row> malesDF = spark.read().jdbc(readUrl, where, dbProperties);
malesDF.show();
System.out.println("Update weights by 2 pounds (results in a new DataFrame with same column names)");
Dataset<Row> heavyDF = entireDF.withColumn("updated_weight_lb", entireDF.col("weight_lb").plus(2));
Dataset<Row> updatedDF = heavyDF.select("id", "name", "is_male", "height_in", "updated_weight_lb")
.withColumnRenamed("updated_weight_lb", "weight_lb");
updatedDF.show();
System.out.println("Save the updated data to a new table with JDBC");
where = "sparktest.updated_people";
updatedDF.write().mode("error").jdbc(writeUrl, where, dbProperties);
System.out.println("Load the new table into a new DataFrame to confirm that it was saved successfully.");
Dataset<Row> retrievedDF = spark.read().jdbc(writeUrl, where, dbProperties);
retrievedDF.show();
spark.stop();
}
}
编译并提交任务
mkdir -p target/java
javac src/main/java/com/sequoiadb/test/JDBCDemo.java -classpath "$SPARK_HOME/jars/*" -d target/java
cd target/java
jar -cf ../JDBCDemo.jar *
cd ../..
APP_ARGS="--class com.sequoiadb.test.JDBCDemo target/JDBCDemo.jar"
#本地提交
$SPARK_HOME/bin/spark-submit --driver-class-path lib/mysql-connector-java-5.1.38.jar $APP_ARGS
#集群提交
$SPARK_HOME/bin/spark-submit --master spark://ip:7077 $APP_ARGS
运行结果如下:
A DataFrame loaded from the entire contents of a table over JDBC.
root
|-- id: integer (nullable = true)
|-- name: string (nullable = true)
|-- is_male: boolean (nullable = true)
|-- height_in: integer (nullable = true)
|-- weight_lb: integer (nullable = true)
+---+-------+-------+---------+---------+
| id| name|is_male|height_in|weight_lb|
+---+-------+-------+---------+---------+
| 1| Alice| false| 60| 125|
| 2| Brian| true| 64| 131|
| 3|Charlie| true| 74| 183|
| 4| Doris| false| 58| 102|
| 5| Ellen| false| 66| 140|
| 6| Frank| true| 66| 151|
| 7| Gerard| true| 68| 190|
| 8| Harold| true| 61| 128|
+---+-------+-------+---------+---------+
Filtering the table to just show the males.
+---+-------+-------+---------+---------+
| id| name|is_male|height_in|weight_lb|
+---+-------+-------+---------+---------+
| 2| Brian| true| 64| 131|
| 3|Charlie| true| 74| 183|
| 6| Frank| true| 66| 151|
| 7| Gerard| true| 68| 190|
| 8| Harold| true| 61| 128|
+---+-------+-------+---------+---------+
Alternately, pre-filter the table for males before loading over JDBC.
+---+-------+-------+---------+---------+
| id| name|is_male|height_in|weight_lb|
+---+-------+-------+---------+---------+
| 2| Brian| true| 64| 131|
| 3|Charlie| true| 74| 183|
| 6| Frank| true| 66| 151|
| 7| Gerard| true| 68| 190|
| 8| Harold| true| 61| 128|
+---+-------+-------+---------+---------+
Update weights by 2 pounds (results in a new DataFrame with same column names)
+---+-------+-------+---------+---------+
| id| name|is_male|height_in|weight_lb|
+---+-------+-------+---------+---------+
| 1| Alice| false| 60| 127|
| 2| Brian| true| 64| 133|
| 3|Charlie| true| 74| 185|
| 4| Doris| false| 58| 104|
| 5| Ellen| false| 66| 142|
| 6| Frank| true| 66| 153|
| 7| Gerard| true| 68| 192|
| 8| Harold| true| 61| 130|
+---+-------+-------+---------+---------+
Save the updated data to a new table with JDBC
Load the new table into a new DataFrame to confirm that it was saved successfully.
+---+-------+-------+---------+---------+
| id| name|is_male|height_in|weight_lb|
+---+-------+-------+---------+---------+
| 1| Alice| false| 60| 127|
| 2| Brian| true| 64| 133|
| 3|Charlie| true| 74| 185|
| 4| Doris| false| 58| 104|
| 5| Ellen| false| 66| 142|
| 6| Frank| true| 66| 153|
| 7| Gerard| true| 68| 192|
| 8| Harold| true| 61| 130|
+---+-------+-------+---------+---------+