QEMU
We'll start writing a program for the LM3S6965, a Cortex-M3 microcontroller.We have chosen this as our initial target because it can be emulated using QEMUso you don't need to fiddle with hardware in this section and we can focus onthe tooling and the development process.
IMPORTANTWe'll use the name "app" for the project name in this tutorial.Whenever you see the word "app" you should replace it with the name you selectedfor your project. Or, you could also name your project "app" and avoid thesubstitutions.
Creating a non standard Rust program
We'll use the cortex-m-quickstart
project template to generate a newproject from it.
Using cargo-generate
First install cargo-generate
cargo install cargo-generate
Then generate a new project
cargo generate --git https://github.com/rust-embedded/cortex-m-quickstart
Project Name: app
Creating project called `app`...
Done! New project created /tmp/app
cd app
Using git
Clone the repository
git clone https://github.com/rust-embedded/cortex-m-quickstart app
cd app
And then fill in the placeholders in the Cargo.toml
file
[package]
authors = ["{{authors}}"] # "{{authors}}" -> "John Smith"
edition = "2018"
name = "{{project-name}}" # "{{project-name}}" -> "awesome-app"
version = "0.1.0"
# ..
[[bin]]
name = "{{project-name}}" # "{{project-name}}" -> "awesome-app"
test = false
bench = false
Using neither
Grab the latest snapshot of the cortex-m-quickstart
template and extract it.
curl -LO https://github.com/rust-embedded/cortex-m-quickstart/archive/master.zip
unzip master.zip
mv cortex-m-quickstart-master app
cd app
Or you can browse to cortex-m-quickstart
, click the green "Clone ordownload" button and then click "Download ZIP".
Then fill in the placeholders in the Cargo.toml
file as done in the secondpart of the "Using git
" version.
Program Overview
For convenience here are the most important parts of the source code in src/main.rs
:
#![no_std]
#![no_main]
extern crate panic_halt;
use cortex_m_rt::entry;
#[entry]
fn main() -> ! {
loop {
// your code goes here
}
}
This program is a bit different from a standard Rust program so let's take acloser look.
#![nostd]
indicates that this program will _not link to the standard crate,std
. Instead it will link to its subset: the core
crate.
#![no_main]
indicates that this program won't use the standard main
interface that most Rust programs use. The main (no pun intended) reason to gowith no_main
is that using the main
interface in no_std
context requiresnightly.
extern crate panic_halt;
. This crate provides a panic_handler
that definesthe panicking behavior of the program. We will cover this in more detail in thePanicking chapter of the book.
#[entry]
is an attribute provided by the cortex-m-rt
crate that's usedto mark the entry point of the program. As we are not using the standard main
interface we need another way to indicate the entry point of the program andthat'd be #[entry]
.
fn main() -> !
. Our program will be the only process running on the targethardware so we don't want it to end! We use a divergent function (the -> !
bit in the function signature) to ensure at compile time that'll be the case.
Cross compiling
The next step is to cross compile the program for the Cortex-M3 architecture.That's as simple as running cargo build —target $TRIPLE
if you know what thecompilation target ($TRIPLE
) should be. Luckily, the .cargo/config
in thetemplate has the answer:
tail -n6 .cargo/config
[build]
# Pick ONE of these compilation targets
# target = "thumbv6m-none-eabi" # Cortex-M0 and Cortex-M0+
target = "thumbv7m-none-eabi" # Cortex-M3
# target = "thumbv7em-none-eabi" # Cortex-M4 and Cortex-M7 (no FPU)
# target = "thumbv7em-none-eabihf" # Cortex-M4F and Cortex-M7F (with FPU)
To cross compile for the Cortex-M3 architecture we have to usethumbv7m-none-eabi
. This compilation target has been set as the default so thetwo commands below do the same:
cargo build --target thumbv7m-none-eabi
cargo build
Inspecting
Now we have a non-native ELF binary in target/thumbv7m-none-eabi/debug/app
. Wecan inspect it using cargo-binutils
.
With cargo-readobj
we can print the ELF headers to confirm that this is an ARMbinary.
cargo readobj --bin app -- -file-headers
Note that:
—bin app
is sugar for inspect the binary attarget/$TRIPLE/debug/app
—bin app
will also (re)compile the binary, if necessary
ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0x0
Type: EXEC (Executable file)
Machine: ARM
Version: 0x1
Entry point address: 0x405
Start of program headers: 52 (bytes into file)
Start of section headers: 153204 (bytes into file)
Flags: 0x5000200
Size of this header: 52 (bytes)
Size of program headers: 32 (bytes)
Number of program headers: 2
Size of section headers: 40 (bytes)
Number of section headers: 19
Section header string table index: 18
cargo-size
can print the size of the linker sections of the binary.
NOTE this output assumes that rust-embedded/cortex-m-rt#111 has beenmerged
cargo size --bin app --release -- -A
we use —release
to inspect the optimized version
app :
section size addr
.vector_table 1024 0x0
.text 92 0x400
.rodata 0 0x45c
.data 0 0x20000000
.bss 0 0x20000000
.debug_str 2958 0x0
.debug_loc 19 0x0
.debug_abbrev 567 0x0
.debug_info 4929 0x0
.debug_ranges 40 0x0
.debug_macinfo 1 0x0
.debug_pubnames 2035 0x0
.debug_pubtypes 1892 0x0
.ARM.attributes 46 0x0
.debug_frame 100 0x0
.debug_line 867 0x0
Total 14570
A refresher on ELF linker sections
.text
contains the program instructions.rodata
contains constant values like strings.data
contains statically allocated variables whose initial values arenot zero.bss
also contains statically allocated variables whose initial valuesare zero.vectortable
is a non-standard section that we use to store the vector(interrupt) table.ARM.attributes
and the.debug
*
sections contain metadata and willnot be loaded onto the target when flashing the binary.
IMPORTANT: ELF files contain metadata like debug information so their sizeon disk does not accurately reflect the space the program will occupy whenflashed on a device. Always use cargo-size
to check how big a binary reallyis.
cargo-objdump
can be used to disassemble the binary.
cargo objdump --bin app --release -- -disassemble -no-show-raw-insn -print-imm-hex
NOTE this output can differ on your system. New versions of rustc, LLVMand libraries can generate different assembly. We truncated some of the instructionsto keep the snippet small.
app: file format ELF32-arm-little
Disassembly of section .text:
main:
400: bl #0x256
404: b #-0x4 <main+0x4>
Reset:
406: bl #0x24e
40a: movw r0, #0x0
< .. truncated any more instructions .. >
DefaultHandler_:
656: b #-0x4 <DefaultHandler_>
UsageFault:
657: strb r7, [r4, #0x3]
DefaultPreInit:
658: bx lr
__pre_init:
659: strb r7, [r0, #0x1]
__nop:
65a: bx lr
HardFaultTrampoline:
65c: mrs r0, msp
660: b #-0x2 <HardFault_>
HardFault_:
662: b #-0x4 <HardFault_>
HardFault:
663: <unknown>
Running
Next, let's see how to run an embedded program on QEMU! This time we'll use thehello
example which actually does something.
For convenience here's the source code of examples/hello.rs
:
//! Prints "Hello, world!" on the host console using semihosting
#![no_main]
#![no_std]
extern crate panic_halt;
use cortex_m_rt::entry;
use cortex_m_semihosting::{debug, hprintln};
#[entry]
fn main() -> ! {
hprintln!("Hello, world!").unwrap();
// exit QEMU
// NOTE do not run this on hardware; it can corrupt OpenOCD state
debug::exit(debug::EXIT_SUCCESS);
loop {}
}
This program uses something called semihosting to print text to the _host_console. When using real hardware this requires a debug session but when usingQEMU this Just Works.
Let's start by compiling the example:
cargo build --example hello
The output binary will be located attarget/thumbv7m-none-eabi/debug/examples/hello
.
To run this binary on QEMU run the following command:
qemu-system-arm \
-cpu cortex-m3 \
-machine lm3s6965evb \
-nographic \
-semihosting-config enable=on,target=native \
-kernel target/thumbv7m-none-eabi/debug/examples/hello
Hello, world!
The command should successfully exit (exit code = 0) after printing the text. On*nix you can check that with the following command:
echo $?
0
Let's break down that QEMU command:
qemu-system-arm
. This is the QEMU emulator. There are a few variants ofthese QEMU binaries; this one does full system emulation of ARM machineshence the name.-cpu cortex-m3
. This tells QEMU to emulate a Cortex-M3 CPU. Specifying theCPU model lets us catch some miscompilation errors: for example, running aprogram compiled for the Cortex-M4F, which has a hardware FPU, will make QEMUerror during its execution.-machine lm3s6965evb
. This tells QEMU to emulate the LM3S6965EVB, aevaluation board that contains a LM3S6965 microcontroller.-nographic
. This tells QEMU to not launch its GUI.-semihosting-config (..)
. This tells QEMU to enable semihosting. Semihostinglets the emulated device, among other things, use the host stdout, stderr andstdin and create files on the host.-kernel $file
. This tells QEMU which binary to load and run on the emulatedmachine.
Typing out that long QEMU command is too much work! We can set a custom runnerto simplify the process. .cargo/config
has a commented out runner that invokesQEMU; let's uncomment it:
head -n3 .cargo/config
[target.thumbv7m-none-eabi]
# uncomment this to make `cargo run` execute programs on QEMU
runner = "qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel"
This runner only applies to the thumbv7m-none-eabi
target, which is ourdefault compilation target. Now cargo run
will compile the program and run iton QEMU:
cargo run --example hello --release
Compiling app v0.1.0 (file:///tmp/app)
Finished release [optimized + debuginfo] target(s) in 0.26s
Running `qemu-system-arm -cpu cortex-m3 -machine lm3s6965evb -nographic -semihosting-config enable=on,target=native -kernel target/thumbv7m-none-eabi/release/examples/hello`
Hello, world!
Debugging
Debugging is critical to embedded development. Let's see how it's done.
Debugging an embedded device involves remote debugging as the program that wewant to debug won't be running on the machine that's running the debuggerprogram (GDB or LLDB).
Remote debugging involves a client and a server. In a QEMU setup, the clientwill be a GDB (or LLDB) process and the server will be the QEMU process that'salso running the embedded program.
In this section we'll use the hello
example we already compiled.
The first debugging step is to launch QEMU in debugging mode:
qemu-system-arm \
-cpu cortex-m3 \
-machine lm3s6965evb \
-nographic \
-semihosting-config enable=on,target=native \
-gdb tcp::3333 \
-S \
-kernel target/thumbv7m-none-eabi/debug/examples/hello
This command won't print anything to the console and will block the terminal. Wehave passed two extra flags this time:
-gdb tcp::3333
. This tells QEMU to wait for a GDB connection on TCPport 3333.-S
. This tells QEMU to freeze the machine at startup. Without this theprogram would have reached the end of main before we had a chance to launchthe debugger!
Next we launch GDB in another terminal and tell it to load the debug symbols ofthe example:
gdb-multiarch -q target/thumbv7m-none-eabi/debug/examples/hello
NOTE: you might need another version of gdb instead of gdb-multiarch
dependingon which one you installed in the installation chapter. This could also bearm-none-eabi-gdb
or just gdb
.
Then within the GDB shell we connect to QEMU, which is waiting for a connectionon TCP port 3333.
target remote :3333
Remote debugging using :3333
Reset () at $REGISTRY/cortex-m-rt-0.6.1/src/lib.rs:473
473 pub unsafe extern "C" fn Reset() -> ! {
You'll see that the process is halted and that the program counter is pointingto a function named Reset
. That is the reset handler: what Cortex-M coresexecute upon booting.
This reset handler will eventually call our main function. Let's skip all theway there using a breakpoint and the continue
command:
break main
Breakpoint 1 at 0x400: file examples/panic.rs, line 29.
continue
Continuing.
Breakpoint 1, main () at examples/hello.rs:17
17 let mut stdout = hio::hstdout().unwrap();
We are now close to the code that prints "Hello, world!". Let's move forwardusing the next
command.
next
18 writeln!(stdout, "Hello, world!").unwrap();
next
20 debug::exit(debug::EXIT_SUCCESS);
At this point you should see "Hello, world!" printed on the terminal that'srunning qemu-system-arm
.
$ qemu-system-arm (..)
Hello, world!
Calling next
again will terminate the QEMU process.
next
[Inferior 1 (Remote target) exited normally]
You can now exit the GDB session.
quit