33.2 std::list
std::list是标准的双向链表,每一个元素包含两个指针,分别前一个和后一个元素。 这意味着每个元素的的内存空间大小要相应的扩大2个字。(在32位环境下为8字节,64位环境下为16字节) std::list也是一个循环链表,也就是说最后一个元素包含一个指向第一个元素的指针,反之亦然。 C++ STL只是为你希望做为链表使用的结构体增加前向和后向指针。 下面我们构造一个包含两个简单变量的结构体,将其存储在链表中。 虽然C++标准中并没有规定如何实现list,但是MSVC和GCC的实现比较相似,因此下面仅通过一段源代码来展示。
#include <stdio.h>
#include <list>
#include <iostream>
struct a
{
int x;
int y;
};
struct List_node
{
struct List_node* _Next;
struct List_node* _Prev;
int x;
int y;
};
void dump_List_node (struct List_node *n)
{
printf ("ptr=0x%p _Next=0x%p _Prev=0x%p x=%d y=%d\n", n, n->_Next, n->_Prev, n->x, n->y);
};
void dump_List_vals (struct List_node* n)
{
struct List_node* current=n;
for (;;)
{
dump_List_node (current);
current=current->_Next;
if (current==n) // end
break;
};
};
void dump_List_val (unsigned int *a)
{
#ifdef _MSC_VER
// GCC implementation doesn’t have "size" field
printf ("_Myhead=0x%p, _Mysize=%d\n", a[0], a[1]);
#endif
dump_List_vals ((struct List_node*)a[0]);
};
int main()
{
std::list<struct a> l;
printf ("* empty list:\n");
dump_List_val((unsigned int*)(void*)&l);
struct a t1;
t1.x=1;
t1.y=2;
l.push_front (t1);
t1.x=3;
t1.y=4;
l.push_front (t1);
t1.x=5;
t1.y=6;
l.push_back (t1);
printf ("* 3-elements list:\n");
dump_List_val((unsigned int*)(void*)&l);
std::list<struct a>::iterator tmp;
printf ("node at .begin:\n");
tmp=l.begin();
dump_List_node ((struct List_node *)*(void**)&tmp);
printf ("node at .end:\n");
tmp=l.end();
dump_List_node ((struct List_node *)*(void**)&tmp);
printf ("* let’s count from the begin:\n");
std::list<struct a>::iterator it=l.begin();
printf ("1st element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("2nd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("3rd element: %d %d\n", (*it).x, (*it).y);
it++;
printf ("element at .end(): %d %d\n", (*it).x, (*it).y);
printf ("* let’s count from the end:\n");
std::list<struct a>::iterator it2=l.end();
printf ("element at .end(): %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("3rd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("2nd element: %d %d\n", (*it2).x, (*it2).y);
it2--;
printf ("1st element: %d %d\n", (*it2).x, (*it2).y);
printf ("removing last element...\n");
l.pop_back();
dump_List_val((unsigned int*)(void*)&l);
};
GCC
我们以GCC为例开始,当我们运行这个例子,可以看到屏幕上打印出了大量输出,我们依次对其进行分析。
* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0
我们可以看到一个空的链表,它由一个元素组成,其中x和y中包含有垃圾数据。前向和后向指针均指向自身。
这一时刻的.begin和.end迭代器两者相等。 当我们压入3个元素之后,链表的内部状态将变为:
* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
最后一个元素依然位于0x28fe90,只有当链表被销毁的时候它才会移动。x和y中依然包含有垃圾数据。虽然和链表中的最后一个元素中的x和y拥有相同的值,但这并不能说明这些值有意义。 下面这幅图说明了链表中的三个元素如何在内存中存储
变量l始终指向第一个链表节点 .begin()和.end()迭代器不指向任何东西,也并不出现在内存中,但是当适当的方法被调用的时候将返回指向这些节点的指针。(这句话是说.begin()和.end()并不是变量,而是函数,该函数返回迭代器。) 链表中包含一个垃圾元素在链表的实现中是非常流行的方式,如果不包含它,很多操作都将变得复杂和低效。 迭代器实质上是一个指向链表节点的指针。list.begin()和list.end()仅仅返回迭代器。
node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
实际上链表是循环的非常有用:包含一个指向第一个链表元素的指针,类似l变量,这将有利于快速获取指向最后一个元素的指针,而不必遍历整个链表。这样也有利于快速的在链表尾部插入元素。 –和++操作符只是将当前的迭代器的值设置为current_node->prev、current_node->next。反向迭代器只是以相反的方向做相似的工作。
迭代器的*操作符返回指向节点结构指针,也就是用户结构的起始位置,如,指向第一个结构体元素x的指针。 List的插入和删除比较简单,只需要分配新节点同时给指针设置有效值。 这就是元素被删除后,迭代器会失效的原因,它依然指向已经被释放的节点。当然,迭代器指向的被释放的节点的数据是不能再使用的。
GCC的实现中没有存储链表的大小,由于没有其他方式获取这些信息,.size()方法需要遍历整个链表统计元素个数,因此执行速度较慢。这一操作的时间复杂度为O(n),即消耗时间多少和链表中元素个数成正比。
Listing34.7: GCC 4.8.1 -O3 -fno-inline-small-functions
main proc near
push ebp
mov ebp, esp
push esi
push ebx
and esp, 0FFFFFFF0h
sub esp, 20h
lea ebx, [esp+10h]
mov dword ptr [esp], offset s ; "* empty list:"
mov [esp+10h], ebx
mov [esp+14h], ebx
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
lea esi, [esp+18h]
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 1 ; X for new element
mov dword ptr [esp+1Ch], 2 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ; std::list<a,std::allocator<a
>>::push_front(a const&)
mov [esp+4], esi
mov [esp], ebx
mov dword ptr [esp+18h], 3 ; X for new element
mov dword ptr [esp+1Ch], 4 ; Y for new element
call _ZNSt4listI1aSaIS0_EE10push_frontERKS0_ ; std::list<a,std::allocator<a
>>::push_front(a const&)
mov dword ptr [esp], 10h
mov dword ptr [esp+18h], 5 ; X for new element
mov dword ptr [esp+1Ch], 6 ; Y for new element
call _Znwj ; operator new(uint)
cmp eax, 0FFFFFFF8h
jz short loc_80002A6
mov ecx, [esp+1Ch]
mov edx, [esp+18h]
mov [eax+0Ch], ecx
mov [eax+8], edx
loc_80002A6: ; CODE XREF: main+86
mov [esp+4], ebx
mov [esp], eax
call _ZNSt8__detail15_List_node_base7_M_hookEPS0_ ; std::__detail::
_List_node_base::_M_hook(std::__detail::_List_node_base*)
mov dword ptr [esp], offset a3ElementsList ; "* 3-elements list:"
call puts
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov dword ptr [esp], offset aNodeAt_begin ; "node at .begin:"
call puts
mov eax, [esp+10h]
mov [esp], eax
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aNodeAt_end ; "node at .end:"
call puts
mov [esp], ebx
call _Z14dump_List_nodeP9List_node ; dump_List_node(List_node *)
mov dword ptr [esp], offset aLetSCountFromT ; "* let’s count from the begin:"
call puts
mov esi, [esp+10h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi] ; operator++: get ->next pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi] ; operator++: get ->next pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aLetSCountFro_0 ; "* let’s count from the end:"
call puts
mov eax, [esp+1Ch]
mov dword ptr [esp+4], offset aElementAt_endD ; "element at .end(): %d %d\n"
mov dword ptr [esp], 1
mov [esp+0Ch], eax
mov eax, [esp+18h]
mov [esp+8], eax
call __printf_chk
mov esi, [esp+14h]
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a3rdElementDD ; "3rd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov esi, [esi+4] ; operator--: get ->prev pointer
mov eax, [esi+0Ch]
mov [esp+0Ch], eax
mov eax, [esi+8]
mov dword ptr [esp+4], offset a2ndElementDD ; "2nd element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov eax, [esi+4] ; operator--: get ->prev pointer
mov edx, [eax+0Ch]
mov [esp+0Ch], edx
mov eax, [eax+8]
mov dword ptr [esp+4], offset a1stElementDD ; "1st element: %d %d\n"
mov dword ptr [esp], 1
mov [esp+8], eax
call __printf_chk
mov dword ptr [esp], offset aRemovingLastEl ; "removing last element..."
call puts
mov esi, [esp+14h]
mov [esp], esi
call _ZNSt8__detail15_List_node_base9_M_unhookEv ; std::__detail::
_List_node_base::_M_unhook(void)
mov [esp], esi ; void *
call _ZdlPv ; operator delete(void *)
mov [esp], ebx
call _Z13dump_List_valPj ; dump_List_val(uint *)
mov [esp], ebx
call _ZNSt10_List_baseI1aSaIS0_EE8_M_clearEv ; std::_List_base<a,std::
allocator<a>>::_M_clear(void)
lea esp, [ebp-8]
xor eax, eax
pop ebx
pop esi
pop ebp
retn
main endp
Listing 34.8: 所有输出
* empty list:
ptr=0x0028fe90 _Next=0x0028fe90 _Prev=0x0028fe90 x=3 y=0
* 3-elements list:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x00034b40 _Prev=0x000349a0 x=1 y=2
ptr=0x00034b40 _Next=0x0028fe90 _Prev=0x00034988 x=5 y=6
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
node at .begin:
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
node at .end:
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034b40 x=5 y=6
* let’s count from the begin:
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 5 6
* let’s count from the end:
element at .end(): 5 6
3rd element: 5 6
2nd element: 1 2
1st element: 3 4
removing last element...
ptr=0x000349a0 _Next=0x00034988 _Prev=0x0028fe90 x=3 y=4
ptr=0x00034988 _Next=0x0028fe90 _Prev=0x000349a0 x=1 y=2
ptr=0x0028fe90 _Next=0x000349a0 _Prev=0x00034988 x=5 y=6
MSVC
MSVC实现形式基本相同,但是它存储了当前list的大小。这意味着.size()方法非常迅速,只需要从内存中读取一个值即可。从另一个方面来说,必须在插入和删除操作后更新size变量的值。 MSVC组织节点的方式也稍有不同。
GCC将垃圾元素放在链表的尾部,而MSVC放在链表起始位置。
Listing 34.9: MSVC 2012 /Fa2.asm /Ox /GS- /Ob1
_l$ = -16 ; size = 8
_t1$ = -8 ; size = 8
_main PROC
sub esp, 16 ; 00000010H
push ebx
push esi
push edi
push 0
push 0
lea ecx, DWORD PTR _l$[esp+36]
mov DWORD PTR _l$[esp+40], 0
; allocate first "garbage" element
call ?_Buynode0@?$_List_alloc@$0A@U?$_List_base_types@Ua@@V?
$allocator@Ua@@@std@@@std@@@std@@QAEPAU?$_List_node@Ua@@PAX@2@PAU32@0@Z ; std::_List_alloc<0,
std::_List_base_types<a,std::allocator<a> > >::_Buynode0
mov edi, DWORD PTR __imp__printf
mov ebx, eax
push OFFSET $SG40685 ; ’* empty list:’
mov DWORD PTR _l$[esp+32], ebx
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov esi, DWORD PTR [ebx]
add esp, 8
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+40], 1 ; data for a new node
mov DWORD PTR _t1$[esp+44], 2 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?
$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 3 ; data for a new node
mov DWORD PTR [ecx], eax
mov esi, DWORD PTR [ebx]
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [esi+4]
lea ecx, DWORD PTR _l$[esp+36]
push esi
mov DWORD PTR _t1$[esp+44], 4 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?
$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>
mov DWORD PTR [esi+4], eax
mov ecx, DWORD PTR [eax+4]
mov DWORD PTR _t1$[esp+28], 5 ; data for a new node
mov DWORD PTR [ecx], eax
lea eax, DWORD PTR _t1$[esp+28]
push eax
push DWORD PTR [ebx+4]
lea ecx, DWORD PTR _l$[esp+36]
push ebx
mov DWORD PTR _t1$[esp+44], 6 ; data for a new node
; allocate new node
call ??$_Buynode@ABUa@@@?$_List_buy@Ua@@V?$allocator@Ua@@@std@@@std@@QAEPAU?
$_List_node@Ua@@PAX@1@PAU21@0ABUa@@@Z ; std::_List_buy<a,std::allocator<a> >::_Buynode<a
const &>
mov DWORD PTR [ebx+4], eax
mov ecx, DWORD PTR [eax+4]
push OFFSET $SG40689 ; ’* 3-elements list:’
mov DWORD PTR _l$[esp+36], 3
mov DWORD PTR [ecx], eax
call edi ; printf
lea eax, DWORD PTR _l$[esp+32]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
push OFFSET $SG40831 ; ’node at .begin:’
call edi ; printf
push DWORD PTR [ebx] ; get next field of node $l$ variable points to
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40835 ; ’node at .end:’
call edi ; printf
push ebx ; pointer to the node $l$ variable points to!
call ?dump_List_node@@YAXPAUList_node@@@Z ; dump_List_node
push OFFSET $SG40839 ; ’* let’’s count from the begin:’
call edi ; printf
mov esi, DWORD PTR [ebx] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40846 ; ’1st element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40848 ; ’2nd element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi] ; operator++: get ->next pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40850 ; ’3rd element: %d %d’
call edi ; printf
mov eax, DWORD PTR [esi] ; operator++: get ->next pointer
add esp, 64 ; 00000040H
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40852 ; ’element at .end(): %d %d’
call edi ; printf
push OFFSET $SG40853 ; ’* let’’s count from the end:’
call edi ; printf
push DWORD PTR [ebx+12] ; use x and y fields from the node $l$ variable points to
push DWORD PTR [ebx+8]
push OFFSET $SG40860 ; ’element at .end(): %d %d’
call edi ; printf
mov esi, DWORD PTR [ebx+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40862 ; ’3rd element: %d %d’
call edi ; printf
mov esi, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [esi+12]
push DWORD PTR [esi+8]
push OFFSET $SG40864 ; ’2nd element: %d %d’
call edi ; printf
mov eax, DWORD PTR [esi+4] ; operator--: get ->prev pointer
push DWORD PTR [eax+12]
push DWORD PTR [eax+8]
push OFFSET $SG40866 ; ’1st element: %d %d’
call edi ; printf
add esp, 64 ; 00000040H
push OFFSET $SG40867 ; ’removing last element...’
call edi ; printf
mov edx, DWORD PTR [ebx+4]
add esp, 4
; prev=next?
; it is the only element, "garbage one"?
; if yes, do not delete it!
cmp edx, ebx
je SHORT $LN349@main
mov ecx, DWORD PTR [edx+4]
mov eax, DWORD PTR [edx]
mov DWORD PTR [ecx], eax
mov ecx, DWORD PTR [edx]
mov eax, DWORD PTR [edx+4]
push edx
mov DWORD PTR [ecx+4], eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov DWORD PTR _l$[esp+32], 2
$LN349@main:
lea eax, DWORD PTR _l$[esp+28]
push eax
call ?dump_List_val@@YAXPAI@Z ; dump_List_val
mov eax, DWORD PTR [ebx]
add esp, 4
mov DWORD PTR [ebx], ebx
mov DWORD PTR [ebx+4], ebx
cmp eax, ebx
je SHORT $LN412@main
$LL414@main:
mov esi, DWORD PTR [eax]
push eax
call ??3@YAXPAX@Z ; operator delete
add esp, 4
mov eax, esi
cmp esi, ebx
jne SHORT $LL414@main
$LN412@main:
push ebx
call ??3@YAXPAX@Z ; operator delete
add esp, 4
xor eax, eax
pop edi
pop esi
pop ebx
add esp, 16 ; 00000010H
ret 0
_main ENDP
与GCC不同,MSVC代码在函数开始,通过Buynode函数分配垃圾元素,这个方法也用于后续节点的申请(GCC将最早的节点分配在栈上)。
Listing 34.10 完整输出
* empty list:
_Myhead=0x003CC258, _Mysize=0
ptr=0x003CC258 _Next=0x003CC258 _Prev=0x003CC258 x=6226002 y=4522072
* 3-elements list:
_Myhead=0x003CC258, _Mysize=3
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC2A0 _Prev=0x003CC288 x=1 y=2
ptr=0x003CC2A0 _Next=0x003CC258 _Prev=0x003CC270 x=5 y=6
node at .begin:
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
node at .end:
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC2A0 x=6226002 y=4522072
* let’s count from the begin:
1st element: 3 4
2nd element: 1 2
3rd element: 5 6
element at .end(): 6226002 4522072
* let’s count from the end:
element at .end(): 6226002 4522072
3rd element: 5 6
2nd element: 1 2
1st element: 3 4
removing last element...
_Myhead=0x003CC258, _Mysize=2
ptr=0x003CC258 _Next=0x003CC288 _Prev=0x003CC270 x=6226002 y=4522072
ptr=0x003CC288 _Next=0x003CC270 _Prev=0x003CC258 x=3 y=4
ptr=0x003CC270 _Next=0x003CC258 _Prev=0x003CC288 x=1 y=2