rehash
随着操作的不断执行,哈希表保存的键值对会逐渐地增多或者减少,为了让哈希表的负载因子(load factor)维持在一个合理的范围之内,当哈希表保存的键值对数量太多或者太少时,程序需要对哈希表的大小进行相应的扩展或者收缩。
扩展和收缩哈希表的工作可以通过执行 rehash (重新散列)操作来完成,Redis 对字典的哈希表执行 rehash 的步骤如下:
- 为字典的
ht[1]
哈希表分配空间,这个哈希表的空间大小取决于要执行的操作,以及ht[0]
当前包含的键值对数量(也即是ht[0].used
属性的值):- 如果执行的是扩展操作,那么
ht[1]
的大小为第一个大于等于ht[0].used * 2
的 2^n (2
的n
次方幂); - 如果执行的是收缩操作,那么
ht[1]
的大小为第一个大于等于ht[0].used
的 2^n 。
- 如果执行的是扩展操作,那么
- 将保存在
ht[0]
中的所有键值对 rehash 到ht[1]
上面:rehash 指的是重新计算键的哈希值和索引值,然后将键值对放置到ht[1]
哈希表的指定位置上。 当
ht[0]
包含的所有键值对都迁移到了ht[1]
之后(ht[0]
变为空表),释放ht[0]
,将ht[1]
设置为ht[0]
,并在ht[1]
新创建一个空白哈希表,为下一次 rehash 做准备。 举个例子,假设程序要对图 4-8 所示字典的ht[0]
进行扩展操作,那么程序将执行以下步骤:ht[0].used
当前的值为4
,4 * 2 = 8
,而8
(2^3)恰好是第一个大于等于4
的2
的n
次方,所以程序会将ht[1]
哈希表的大小设置为8
。图 4-9 展示了ht[1]
在分配空间之后,字典的样子。- 将
ht[0]
包含的四个键值对都 rehash 到ht[1]
,如图 4-10 所示。 - 释放
ht[0]
,并将ht[1]
设置为ht[0]
,然后为ht[1]
分配一个空白哈希表,如图 4-11 所示。 至此,对哈希表的扩展操作执行完毕,程序成功将哈希表的大小从原来的4
改为了现在的8
。
哈希表的扩展与收缩
当以下条件中的任意一个被满足时,程序会自动开始对哈希表执行扩展操作:
- 服务器目前没有在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于
1
; - 服务器目前正在执行 BGSAVE 命令或者 BGREWRITEAOF 命令,并且哈希表的负载因子大于等于
5
; 其中哈希表的负载因子可以通过公式:
- # 负载因子 = 哈希表已保存节点数量 / 哈希表大小
- load_factor = ht[0].used / ht[0].size
计算得出。
比如说,对于一个大小为 4
,包含 4
个键值对的哈希表来说,这个哈希表的负载因子为:
- load_factor = 4 / 4 = 1
又比如说,对于一个大小为 512
,包含 256
个键值对的哈希表来说,这个哈希表的负载因子为:
- load_factor = 256 / 512 = 0.5
根据 BGSAVE 命令或 BGREWRITEAOF 命令是否正在执行,服务器执行扩展操作所需的负载因子并不相同,这是因为在执行 BGSAVE 命令或 BGREWRITEAOF 命令的过程中,Redis 需要创建当前服务器进程的子进程,而大多数操作系统都采用写时复制(copy-on-write)技术来优化子进程的使用效率,所以在子进程存在期间,服务器会提高执行扩展操作所需的负载因子,从而尽可能地避免在子进程存在期间进行哈希表扩展操作,这可以避免不必要的内存写入操作,最大限度地节约内存。
另一方面,当哈希表的负载因子小于 0.1
时,程序自动开始对哈希表执行收缩操作。