自动求导机制

  1. 从后向中排除子图
  2. 自动求导如何编码历史信息
  3. Variable上的In-place操作
  4. In-place正确性检查

本说明将概述Autograd如何工作并记录操作。没有必要全部了解,但建议您熟悉它,他可以将帮助你编写程序更高效,更清洁;同时还可以帮助您进行调试。

向后排除子视图:

每个变量都有一个标记:requires_grad允许从梯度计算中细分排除子图,并可以提高效率。

requires_grad

如果一个输入变量定义requires_grad,那么他的输出也可以使用requires_grad;相反,只有当所有的输入变量都不定义requires_grad梯度,才不会输出梯度。如果其中所有的变量都不需要计算梯度,在子图中从不执行向后计算。

  1. >>> x = Variable(torch.randn(5, 5))
  2. >>> y = Variable(torch.randn(5, 5))
  3. >>> z = Variable(torch.randn(5, 5), requires_grad=True)
  4. >>> a = x + y
  5. >>> a.requires_grad
  6. False
  7. >>> b = a + z
  8. >>> b.requires_grad
  9. True

当您想要冻结部分模型时,这个标志特别有用;除非您事先知道不会使用到某些参数的梯度。

例如,如果您想调整预训练的CNN,只要切换冻结模型中的requires_grad标志即可,直到计算到最后一层才会保存中间缓冲区,仿射变换和网络输出都需要使用梯度的权值。

  1. model = torchvision.models.resnet18(pretrained=True)
  2. for param in model.parameters():
  3. param.requires_grad = False
  4. # Replace the last fully-connected layer
  5. # Parameters of newly constructed modules have requires_grad=True by default
  6. model.fc = nn.Linear(512, 100)
  7. # Optimize only the classifier
  8. optimizer = optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9)

autograd如何编码历史信息:

每个变量都有一个.creator属性,它指向把它作为输出的函数。这是一个由Function对象作为节点组成的有向无环图(DAG)的入口点,它们之间的引用就是图的边。每次执行一个操作时,一个表示它的新Function就被实例化,它的forward()方法被调用,并且它输出的Variable的创建者被设置为这个Function。然后,通过跟踪从任何变量到叶节点的路径,可以重建创建数据的操作序列,并自动计算梯度。

需要注意的一点是,整个图在每次迭代时都是从头开始重新创建的,这就允许使用任意的Python控制流语句,这样可以在每次迭代时改变图的整体形状和大小。在启动训练之前不必对所有可能的路径进行编码—— what you run is what you differentiate.

Variable上的In-place操作:

支持自动归档中的就地操作是一件很困难的事情,我们在大多数情况下都不鼓励使用它们。Autograd的积极缓冲区释放和重用使其非常高效,并且在现场操作实际上会降低内存使用量的情况下,极少数场合很少。除非您在内存压力很大的情况下运行,否则您可能永远不需要使用它们。

限制现场操作适用性的两个主要原因:

  1. 覆盖计算梯度所需的值。这就是为什么变量不支持log_。其梯度公式需要原始输入,而通过计算逆运算可以重新创建它,它在数值上是不稳定的,并且需要额外的工作,这往往会失败使用这些功能的目的。
  2. 每个in-place操作实际上需要实现重写计算图。不合适的版本只需分配新对象,并保留对旧图的引用,而in-place操作则需要将所有输入的creator更改为Function表示此操作。这就比较棘手,特别是如果有许多变量引用相同的存储(例如通过索引或转置创建的),并且如果被修改输入的存储被其他Variable引用,则in-place函数实际上会抛出错误。

In-place正确性检测:

每个变量都保留一个版本计数器version counter,当在任何操作中被使用时,它都会递增。当函数保存任何用于后向的tensor时,还会保存其包含变量的版本计数器version counter。一旦访问,self.saved_tensors它被会被检查,如果它大于保存的值,则会引起错误。

译者署名

用户名 头像 职能 签名
Song 自动求导机制 - 图1 翻译 人生总要追求点什么