迁移学习教程
译者:@Sylvester
校对者:@Archie Yu
这个教程将教你如何使用迁移学习训练你的网络. 你可以在 cs231n 笔记 中 阅读更多有关迁移学习的信息.
引用自该笔记,
事实上, 很少有人从头(随机初始化)开始训练一个卷积网络, 因为拥有一个足够大的数据库是比较少见的. 替代的是, 通常会从一个大的数据集(例如 ImageNet, 包含120万的图片和1000个分类)预训练一个卷积网络, 然后将这个卷积网络作为初始化的网络, 或者是感兴趣任务的固定的特征提取器.
如下是两种主要的迁移学习的使用场景:
- 微调卷积网络: 取代随机初始化网络, 我们从一个预训练的网络初始化, 比如从 imagenet 1000 数据集预训练的网络. 其余的训练就像往常一样.
- 卷积网络作为固定的特征提取器: 在这里, 我们固定网络中的所有权重, 最后的全连接层除外. 最后的全连接层被新的随机权重替换, 并且, 只有这一层是被训练的.
# License: BSD
# Author: Sasank Chilamkurthy
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
plt.ion() # interactive mode
加载数据
我们用 torchvision 和 torch.utils.data 包加载数据.
我们今天要解决的问题是, 训练一个可以区分 ants (蚂蚁) 和 bees (蜜蜂) 的模型. 用于训练的 ants 和 bees 图片各120张. 每一类用于验证的图片各75张. 通常, 如果从头开始训练, 这个非常小的数据集不足以进行泛化. 但是, 因为我们使用迁移学习, 应该可以取得很好的泛化效果.
这个数据集是一个非常小的 imagenet 子集
注解:
从这里 <[https://download.pytorch.org/tutorial/hymenoptera_data.zip](https://download.pytorch.org/tutorial/hymenoptera_data.zip)>
_ 下载数据, 然后解压到当前目录.
# 训练要做数据增强和数据标准化
# 验证只做数据标准化
data_transforms = {
'train': transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
use_gpu = torch.cuda.is_available()
显示一些图片
让我们显示一些训练中的图片, 以便了解数据增强.
def imshow(inp, title=None):
"""Imshow for Tensor."""
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # 暂停一会, 让 plots 更新
# 获得一批训练数据
inputs, classes = next(iter(dataloaders['train']))
# 从这批数据生成一个方格
out = torchvision.utils.make_grid(inputs)
imshow(out, title=[class_names[x] for x in classes])
训练模型
现在, 让我们写一个通用的函数来训练模型. 这里, 我们将会举例说明:
- 调度学习率
- 保存最佳的学习模型
下面函数中, scheduler
参数是 torch.optim.lr_scheduler
中的 LR scheduler 对象.
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# 每一个迭代都有训练和验证阶段
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # 设置 model 为训练 (training) 模式
else:
model.train(False) # 设置 model 为评估 (evaluate) 模式
running_loss = 0.0
running_corrects = 0
# 遍历数据
for data in dataloaders[phase]:
# 获取输入
inputs, labels = data
# 用 Variable 包装输入数据
if use_gpu:
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
# 设置梯度参数为 0
optimizer.zero_grad()
# 正向传递
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
# 如果是训练阶段, 向后传递和优化
if phase == 'train':
loss.backward()
optimizer.step()
# 统计
running_loss += loss.data[0] * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# 深拷贝 model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# 加载最佳模型的权重
model.load_state_dict(best_model_wts)
return model
显示模型的预测结果
写一个处理少量图片, 并显示预测结果的通用函数
def visualize_model(model, num_images=6):
images_so_far = 0
fig = plt.figure()
for i, data in enumerate(dataloaders['val']):
inputs, labels = data
if use_gpu:
inputs, labels = Variable(inputs.cuda()), Variable(labels.cuda())
else:
inputs, labels = Variable(inputs), Variable(labels)
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
return
调整卷积网络
加载一个预训练的网络, 并重置最后一个全连接层.
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 2)
if use_gpu:
model_ft = model_ft.cuda()
criterion = nn.CrossEntropyLoss()
# 如你所见, 所有参数都将被优化
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
# 每 7 个迭代, 让 LR 衰减 0.1 因素
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
训练和评估
如果使用 CPU, 这将花费 15-25 分钟. 但使用 GPU 的话, 需要的时间将少于1分钟.
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
visualize_model(model_ft)
卷积网络作为固定的特征提取器
这里, 我们固定网络中除最后一层外的所有权重. 为了固定这些参数, 我们需要设置 requires_grad == False
, 然后在 backward()
中就不会计算梯度.
你可以在 这里 阅读更多相关信息.
model_conv = torchvision.models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# 新构建的 module 的参数中, 默认设置了 requires_grad=True.
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, 2)
if use_gpu:
model_conv = model_conv.cuda()
criterion = nn.CrossEntropyLoss()
# 如你所见, 和我们前面提出的一样, 只有最后一层的参数被优化.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
# 每 7 个迭代, 让 LR 衰减 0.1 因素
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
训练和评估
在使用 CPU 的情况下, 和前一个方案相比, 这将花费的时间是它的一半. 期望中, 网络的大部分是不需要计算梯度的. 前向传递依然要计算梯度.
model_conv = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs=25)
visualize_model(model_conv)
plt.ioff()
plt.show()