3.2 执行精确的浮点数运算

问题

你需要对浮点数执行精确的计算操作,并且不希望有任何小误差的出现。

解决方案

浮点数的一个普遍问题是它们并不能精确的表示十进制数。并且,即使是最简单的数学运算也会产生小的误差,比如:

  1. >>> a = 4.2
  2. >>> b = 2.1
  3. >>> a + b
  4. 6.300000000000001
  5. >>> (a + b) == 6.3
  6. False
  7. >>>

这些错误是由底层CPU和IEEE 754标准通过自己的浮点单位去执行算术时的特征。由于Python的浮点数据类型使用底层表示存储数据,因此你没办法去避免这样的误差。

如果你想更加精确(并能容忍一定的性能损耗),你可以使用 decimal 模块:

  1. >>> from decimal import Decimal
  2. >>> a = Decimal('4.2')
  3. >>> b = Decimal('2.1')
  4. >>> a + b
  5. Decimal('6.3')
  6. >>> print(a + b)
  7. 6.3
  8. >>> (a + b) == Decimal('6.3')
  9. True

初看起来,上面的代码好像有点奇怪,比如我们用字符串来表示数字。然而, Decimal 对象会像普通浮点数一样的工作(支持所有的常用数学运算)。如果你打印它们或者在字符串格式化函数中使用它们,看起来跟普通数字没什么两样。

decimal 模块的一个主要特征是允许你控制计算的每一方面,包括数字位数和四舍五入运算。为了这样做,你先得创建一个本地上下文并更改它的设置,比如:

  1. >>> from decimal import localcontext
  2. >>> a = Decimal('1.3')
  3. >>> b = Decimal('1.7')
  4. >>> print(a / b)
  5. 0.7647058823529411764705882353
  6. >>> with localcontext() as ctx:
  7. ... ctx.prec = 3
  8. ... print(a / b)
  9. ...
  10. 0.765
  11. >>> with localcontext() as ctx:
  12. ... ctx.prec = 50
  13. ... print(a / b)
  14. ...
  15. 0.76470588235294117647058823529411764705882352941176
  16. >>>

讨论

decimal 模块实现了IBM的”通用小数运算规范”。不用说,有很多的配置选项这本书没有提到。

Python新手会倾向于使用 decimal 模块来处理浮点数的精确运算。然而,先理解你的应用程序目的是非常重要的。如果你是在做科学计算或工程领域的计算、电脑绘图,或者是科学领域的大多数运算,那么使用普通的浮点类型是比较普遍的做法。其中一个原因是,在真实世界中很少会要求精确到普通浮点数能提供的17位精度。因此,计算过程中的那么一点点的误差是被允许的。第二点就是,原生的浮点数计算要快的多-有时候你在执行大量运算的时候速度也是非常重要的。

即便如此,你却不能完全忽略误差。数学家花了大量时间去研究各类算法,有些处理误差会比其他方法更好。你也得注意下减法删除以及大数和小数的加分运算所带来的影响。比如:

  1. >>> nums = [1.23e+18, 1, -1.23e+18]
  2. >>> sum(nums) # Notice how 1 disappears
  3. 0.0
  4. >>>

上面的错误可以利用 math.fsum() 所提供的更精确计算能力来解决:

  1. >>> import math
  2. >>> math.fsum(nums)
  3. 1.0
  4. >>>

然而,对于其他的算法,你应该仔细研究它并理解它的误差产生来源。

总的来说, decimal 模块主要用在涉及到金融的领域。在这类程序中,哪怕是一点小小的误差在计算过程中蔓延都是不允许的。因此, decimal 模块为解决这类问题提供了方法。当Python和数据库打交道的时候也通常会遇到 Decimal 对象,并且,通常也是在处理金融数据的时候。

原文:

http://python3-cookbook.readthedocs.io/zh_CN/latest/c03/p02_accurate_decimal_calculations.html