9.6. random — 生成伪随机数

源码: Lib/random.py


该模块实现了各种分布的伪随机数生成器。

对于整数,从范围中有统一的选择。 对于序列,存在随机元素的统一选择、用于生成列表的随机排列的函数、以及用于随机抽样而无需替换的函数。

在实数轴上,有计算均匀、正态(高斯)、对数正态、负指数、伽马和贝塔分布的函数。 为了生成角度分布,可以使用 von Mises 分布。

几乎所有模块函数都依赖于基本函数 random() ,它在半开放区间 [0.0,1.0) 内均匀生成随机浮点数。 Python 使用 Mersenne Twister 作为核心生成器。 它产生 53 位精度浮点数,周期为 2**19937-1 ,其在 C 中的底层实现既快又线程安全。 Mersenne Twister 是现存最广泛测试的随机数发生器之一。 但是,因为完全确定性,它不适用于所有目的,并且完全不适合加密目的。

这个模块提供的函数实际上是 random.Random 类的隐藏实例的绑定方法。 你可以实例化自己的 Random 类实例以获取不共享状态的生成器。

如果你想使用自己设计的不同基础生成器,类 Random 也可以作为子类:在这种情况下,重载 random()seed()getstate() 以及 setstate() 方法。可选地,新生成器可以提供 getrandbits() 方法——这允许 randrange() 在任意大的范围内产生选择。

random 模块还提供 SystemRandom 类,它使用系统函数 os.urandom() 从操作系统提供的源生成随机数。

警告

不应将此模块的伪随机生成器用于安全目的。 有关安全性或加密用途,请参阅 secrets 模块。

参见

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3–30 1998.

Complementary-Multiply-with-Carry recipe 用于兼容的替代随机数发生器,具有长周期和相对简单的更新操作。

9.6.1. 簿记功能

random.seed(a=None, version=2)

初始化随机数生成器。

如果 a 被省略或为 None ,则使用当前系统时间。 如果操作系统提供随机源,则使用它们而不是系统时间(有关可用性的详细信息,请参阅 os.urandom() 函数)。

如果 a 是 int 类型,则直接使用。

对于版本2(默认的),strbytesbytearray 对象转换为 int 并使用它的所有位。

对于版本1(用于从旧版本的Python再现随机序列),用于 strbytes 的算法生成更窄的种子范围。

在 3.2 版更改: 已移至版本2方案,该方案使用字符串种子中的所有位。

random.getstate()

返回捕获生成器当前内部状态的对象。 这个对象可以传递给 setstate() 来恢复状态。

random.setstate(state)

state 应该是从之前调用 getstate() 获得的,并且 setstate() 将生成器的内部状态恢复到 getstate() 被调用时的状态。

random.getrandbits(k)

返回带有 k 位随机的Python整数。 此方法随 MersenneTwister 生成器一起提供,其他一些生成器也可以将其作为API的可选部分提供。 如果可用,getrandbits() 启用 randrange() 来处理任意大范围。

9.6.2. 整数用函数

random.randrange(stop)

random.randrange(start, stop[, step])

range(start, stop, step) 返回一个随机选择的元素。 这相当于 choice(range(start, stop, step)) ,但实际上并没有构建一个 range 对象。

位置参数模式匹配 range() 。不应使用关键字参数,因为该函数可能以意外的方式使用它们。

在 3.2 版更改: randrange() 在生成均匀分布的值方面更为复杂。 以前它使用了像``int(random()*n)``这样的形式,它可以产生稍微不均匀的分布。

random.randint(a, b)

返回随机整数 N 满足 a <= N <= b。相当于 randrange(a, b+1)

9.6.3. 序列用函数

random.choice(seq)

从非空序列 seq 返回一个随机元素。 如果 seq 为空,则引发 IndexError

random.choices(population, weights=None, **, cum_weights=None, k=1*)

population中选择替换,返回大小为 k 的元素列表。 如果 population 为空,则引发 IndexError

如果指定了 weight 序列,则根据相对权重进行选择。 或者,如果给出 cum_weights 序列,则根据累积权重(可能使用 itertools.accumulate() 计算)进行选择。 例如,相对权重``[10, 5, 30, 5]``相当于累积权重``[10, 15, 45, 50]``。 在内部,相对权重在进行选择之前会转换为累积权重,因此提供累积权重可以节省工作量。

如果既未指定 weight 也未指定 cum_weights ,则以相等的概率进行选择。 如果提供了权重序列,则它必须与 population 序列的长度相同。 一个 TypeError 指定了 weightscum_weights

weightscum_weights 可以使用任何与 random() 返回的 float 值互操作的数值类型(包括整数,浮点数和分数但不包括十进制小数)。

3.6 新版功能.

random.shuffle(x[, random])

将序列 x 随机打乱位置。

可选参数 random 是一个0参数函数,在 [0.0, 1.0) 中返回随机浮点数;默认情况下,这是函数 random()

要改变一个不可变的序列并返回一个新的打乱列表,请使用``sample(x, k=len(x))``。

请注意,即使对于小的 len(x)x 的排列总数也可以快速增长,大于大多数随机数生成器的周期。 这意味着长序列的大多数排列永远不会产生。 例如,长度为2080的序列是可以在 Mersenne Twister 随机数生成器的周期内拟合的最大序列。

random.sample(population, k)

返回从总体序列或集合中选择的唯一元素的 k 长度列表。 用于无重复的随机抽样。

返回包含来自总体的元素的新列表,同时保持原始总体不变。 结果列表按选择顺序排列,因此所有子切片也将是有效的随机样本。 这允许抽奖获奖者(样本)被划分为大奖和第二名获胜者(子切片)。

总体成员不必是 hashable 或 unique 。 如果总体包含重复,则每次出现都是样本中可能的选择。

要从一系列整数中选择样本,请使用 range() 对象作为参数。 对于从大量人群中采样,这种方法特别快速且节省空间:sample(range(10000000), k=60)

如果样本大小大于总体大小,则引发 ValueError

9.6.4. 实值分布

以下函数生成特定的实值分布。如常用数学实践中所使用的那样, 函数参数以分布方程中的相应变量命名;大多数这些方程都可以在任何统计学教材中找到。

random.random()

返回 [0.0, 1.0) 范围内的下一个随机浮点数。

random.uniform(a, b)

返回一个随机浮点数 N ,当 a <= ba <= N <= b ,当 b < ab <= N <= a

取决于等式 a + (b-a) * random() 中的浮点舍入,终点 b 可以包括或不包括在该范围内。

random.triangular(low, high, mode)

返回一个随机浮点数 N ,使得 low <= N <= high 并在这些边界之间使用指定的 modelowhigh 边界默认为零和一。 mode 参数默认为边界之间的中点,给出对称分布。

random.betavariate(alpha, beta)

Beta 分布。 参数的条件是 alpha > 0beta > 0。 返回值的范围介于 0 和 1 之间。

random.expovariate(lambd)

指数分布。 lambd 是 1.0 除以所需的平均值,它应该是非零的。 (该参数本应命名为 “lambda” ,但这是 Python 中的保留字。)如果 lambd 为正,则返回值的范围为 0 到正无穷大;如果 lambd 为负,则返回值从负无穷大到 0。

random.gammavariate(alpha, beta)

Gamma 分布。 ( 不是 gamma 函数! ) 参数的条件是 alpha > 0beta > 0

概率分布函数是:

  1. x ** (alpha - 1) * math.exp(-x / beta)
  2. pdf(x) = --------------------------------------
  3. math.gamma(alpha) * beta ** alpha

random.gauss(mu, sigma)

高斯分布。 mu 是平均值,sigma 是标准差。 这比下面定义的 normalvariate() 函数略快。

random.lognormvariate(mu, sigma)

对数正态分布。 如果你采用这个分布的自然对数,你将得到一个正态分布,平均值为 mu 和标准差为 sigmamu 可以是任何值,sigma 必须大于零。

random.normalvariate(mu, sigma)

正态分布。 mu 是平均值,sigma 是标准差。

random.vonmisesvariate(mu, kappa)

冯·米塞斯分布。 mu 是平均角度,以弧度表示,介于0和 2pi 之间,kappa 是浓度参数,必须大于或等于零。 如果 kappa* 等于零,则该分布在 0 到 2pi* 的范围内减小到均匀的随机角度。

random.paretovariate(alpha)

帕累托分布。 alpha 是形状参数。

random.weibullvariate(alpha, beta)

威布尔分布。 alpha 是比例参数,beta 是形状参数。

9.6.5. 替代生成器

class random.SystemRandom([seed])

使用 os.urandom() 函数的类,用从操作系统提供的源生成随机数。 这并非适用于所有系统。 也不依赖于软件状态,序列不可重现。 因此,seed() 方法没有效果而被忽略。 getstate()setstate() 方法如果被调用则引发 NotImplementedError

9.6.6. 关于再现性的说明

有时能够重现伪随机数生成器给出的序列是有用的。 通过重新使用种子值,只要多个线程没有运行,相同的序列就可以在两次不同运行之间重现。

大多数随机模块的算法和种子函数都会在 Python 版本中发生变化,但保证两个方面不会改变:

  • 如果添加了新的播种方法,则将提供向后兼容的播种机。

  • 当兼容的播种机被赋予相同的种子时,生成器的 random() 方法将继续产生相同的序列。

9.6.7. 例子和配方

基本示例:

  1. >>> random() # Random float: 0.0 <= x < 1.0
  2. 0.37444887175646646
  3. >>> uniform(2.5, 10.0) # Random float: 2.5 <= x < 10.0
  4. 3.1800146073117523
  5. >>> expovariate(1 / 5) # Interval between arrivals averaging 5 seconds
  6. 5.148957571865031
  7. >>> randrange(10) # Integer from 0 to 9 inclusive
  8. 7
  9. >>> randrange(0, 101, 2) # Even integer from 0 to 100 inclusive
  10. 26
  11. >>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
  12. 'draw'
  13. >>> deck = 'ace two three four'.split()
  14. >>> shuffle(deck) # Shuffle a list
  15. >>> deck
  16. ['four', 'two', 'ace', 'three']
  17. >>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
  18. [40, 10, 50, 30]

模拟:

  1. >>> # Six roulette wheel spins (weighted sampling with replacement)
  2. >>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
  3. ['red', 'green', 'black', 'black', 'red', 'black']
  4. >>> # Deal 20 cards without replacement from a deck of 52 playing cards
  5. >>> # and determine the proportion of cards with a ten-value
  6. >>> # (a ten, jack, queen, or king).
  7. >>> deck = collections.Counter(tens=16, low_cards=36)
  8. >>> seen = sample(list(deck.elements()), k=20)
  9. >>> seen.count('tens') / 20
  10. 0.15
  11. >>> # Estimate the probability of getting 5 or more heads from 7 spins
  12. >>> # of a biased coin that settles on heads 60% of the time.
  13. >>> trial = lambda: choices('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5
  14. >>> sum(trial() for i in range(10000)) / 10000
  15. 0.4169
  16. >>> # Probability of the median of 5 samples being in middle two quartiles
  17. >>> trial = lambda : 2500 <= sorted(choices(range(10000), k=5))[2] < 7500
  18. >>> sum(trial() for i in range(10000)) / 10000
  19. 0.7958

statistical bootstrapping) 使用重采样和替换来估计大小为五的样本的均值的置信区间的示例:

  1. # http://statistics.about.com/od/Applications/a/Example-Of-Bootstrapping.htm
  2. from statistics import mean
  3. from random import choices
  4. data = 1, 2, 4, 4, 10
  5. means = sorted(mean(choices(data, k=5)) for i in range(20))
  6. print(f'The sample mean of {mean(data):.1f} has a 90% confidence '
  7. f'interval from {means[1]:.1f} to {means[-2]:.1f}')

使用 重新采样排列测试#Permutation_tests) 来确定统计学显著性或者使用 p-值 来观察药物与安慰剂的作用之间差异的示例:

  1. # Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
  2. from statistics import mean
  3. from random import shuffle
  4. drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
  5. placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
  6. observed_diff = mean(drug) - mean(placebo)
  7. n = 10000
  8. count = 0
  9. combined = drug + placebo
  10. for i in range(n):
  11. shuffle(combined)
  12. new_diff = mean(combined[:len(drug)]) - mean(combined[len(drug):])
  13. count += (new_diff >= observed_diff)
  14. print(f'{n} label reshufflings produced only {count} instances with a difference')
  15. print(f'at least as extreme as the observed difference of {observed_diff:.1f}.')
  16. print(f'The one-sided p-value of {count / n:.4f} leads us to reject the null')
  17. print(f'hypothesis that there is no difference between the drug and the placebo.')

模拟单个服务器队列中的到达时间和服务交付:

  1. from random import expovariate, gauss
  2. from statistics import mean, median, stdev
  3. average_arrival_interval = 5.6
  4. average_service_time = 5.0
  5. stdev_service_time = 0.5
  6. num_waiting = 0
  7. arrivals = []
  8. starts = []
  9. arrival = service_end = 0.0
  10. for i in range(20000):
  11. if arrival <= service_end:
  12. num_waiting += 1
  13. arrival += expovariate(1.0 / average_arrival_interval)
  14. arrivals.append(arrival)
  15. else:
  16. num_waiting -= 1
  17. service_start = service_end if num_waiting else arrival
  18. service_time = gauss(average_service_time, stdev_service_time)
  19. service_end = service_start + service_time
  20. starts.append(service_start)
  21. waits = [start - arrival for arrival, start in zip(arrivals, starts)]
  22. print(f'Mean wait: {mean(waits):.1f}. Stdev wait: {stdev(waits):.1f}.')
  23. print(f'Median wait: {median(waits):.1f}. Max wait: {max(waits):.1f}.')

参见

Statistics for Hackers Jake Vanderplas 撰写的视频教程,使用一些基本概念进行统计分析,包括模拟、抽样、改组和交叉验证。

Economics Simulation Peter Norvig 编写的市场模拟,显示了该模块提供的许多工具和分布的有效使用(高斯、均匀、样本、beta变量、选择、三角和随机范围等)。

A Concrete Introduction to Probability (using Python) Peter Norvig 撰写的教程,涵盖了概率论基础知识,如何编写模拟,以及如何使用 Python 进行数据分析。